Switch to: References

Add citations

You must login to add citations.
  1. Dialogue Types, Argumentation Schemes, and Mathematical Practice: Douglas Walton and Mathematics.Andrew Aberdein - 2021 - Journal of Applied Logics 8 (1):159-182.
    Douglas Walton’s multitudinous contributions to the study of argumentation seldom, if ever, directly engage with argumentation in mathematics. Nonetheless, several of the innovations with which he is most closely associated lend themselves to improving our understanding of mathematical arguments. I concentrate on two such innovations: dialogue types (§1) and argumentation schemes (§2). I argue that both devices are much more applicable to mathematical reasoning than may be commonly supposed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are Aesthetic Judgements Purely Aesthetic? Testing the Social Conformity Account.Matthew Inglis & Andrew Aberdein - 2020 - ZDM 52 (6):1127-1136.
    Many of the methods commonly used to research mathematical practice, such as analyses of historical episodes or individual cases, are particularly well-suited to generating causal hypotheses, but less well-suited to testing causal hypotheses. In this paper we reflect on the contribution that the so-called hypothetico-deductive method, with a particular focus on experimental studies, can make to our understanding of mathematical practice. By way of illustration, we report an experiment that investigated how mathematicians attribute aesthetic properties to mathematical proofs. We demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The parallel structure of mathematical reasoning.Andrew Aberdein - 2012 - In Alison Pease & Brendan Larvor (eds.), Proceedings of the Symposium on Mathematical Practice and Cognition Ii: A Symposium at the Aisb/Iacap World Congress 2012. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. pp. 7--14.
    This paper proposes an account of mathematical reasoning as parallel in structure: the arguments which mathematicians use to persuade each other of their results comprise the argumentational structure; the inferential structure is composed of derivations which offer a formal counterpart to these arguments. Some conflicts about the foundations of mathematics correspond to disagreements over which steps should be admissible in the inferential structure. Similarly, disagreements over the admissibility of steps in the argumentational structure correspond to different views about mathematical practice. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations