Switch to: References

Add citations

You must login to add citations.
  1. The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Securing Arithmetical Determinacy.Sebastian G. W. Speitel - 2024 - Ergo: An Open Access Journal of Philosophy 11.
    The existence of non-standard models of first-order Peano-Arithmetic (PA) threatens to undermine the claim of the moderate mathematical realist that non-mysterious access to the natural number structure is possible on the basis of our best arithmetical theories. The move to logics stronger than FOL is denied to the moderate realist on the grounds that it merely shifts the indeterminacy “one level up” into the meta-theory by, illegitimately, assuming the determinacy of the notions needed to formulate such logics. This paper argues (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deflationism, Arithmetic, and the Argument from Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on how we understand (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Nominalism and Mathematical Objectivity.Guanglong Luo - 2022 - Axiomathes 32 (3):833-851.
    We observe that Putnam’s model-theoretic argument against determinacy of the concept of second-order quantification or that of the set is harmless to the nominalist. It serves as a good motivation for the nominalist philosophy of mathematics. But in the end it can lead to a serious challenge to the nominalist account of mathematical objectivity if some minimal assumptions about the relation between mathematical objectivity and logical objectivity are made. We consider three strategies the nominalist might take to meet this challenge, (...)
    Download  
     
    Export citation  
     
    Bookmark