Switch to: Citations

Add references

You must login to add references.
  1. A mathematical introduction to logic.Herbert Bruce Enderton - 1972 - New York,: Academic Press.
    A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Quantification and ontology.Shaughan Lavine - 2000 - Synthese 124 (1-2):1-43.
    Quineans have taken the basic expression of ontological commitment to be an assertion of the form '' x '', assimilated to theEnglish ''there is something that is a ''. Here I take the existential quantifier to be introduced, not as an abbreviation for an expression of English, but via Tarskian semantics. I argue, contrary to the standard view, that Tarskian semantics in fact suggests a quite different picture: one in which quantification is of a substitutional type apparently first proposed by (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)To be is to be a value of a variable (or to be some values of some variables).George Boolos - 1984 - Journal of Philosophy 81 (8):430-449.
    Download  
     
    Export citation  
     
    Bookmark   279 citations  
  • From Kant to Hilbert: a source book in the foundations of mathematics.William Ewald (ed.) - 1996 - New York: Oxford University Press.
    This massive two-volume reference presents a comprehensive selection of the most important works on the foundations of mathematics. While the volumes include important forerunners like Berkeley, MacLaurin, and D'Alembert, as well as such followers as Hilbert and Bourbaki, their emphasis is on the mathematical and philosophical developments of the nineteenth century. Besides reproducing reliable English translations of classics works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare, William Ewald also includes selections from Gauss, Cantor, Kronecker, and Zermelo, all translated here for (...)
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Mathematics in philosophy: selected essays.Charles Parsons - 1983 - Ithaca, N.Y.: Cornell University Press.
    This important book by a major American philosopher brings together eleven essays treating problems in logic and the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • What's So Logical about the “Logical” Axioms?J. H. Harris - 1982 - Studia Logica 41 (2-3):159 - 171.
    Intuitionists and classical logicians use in common a large number of the logical axioms, even though they supposedly mean different things by the logical connectives and quantifiers — conquans for short. But Wittgenstein says The meaning of a word is its use in the language. We prove that in a definite sense the intuitionistic axioms do indeed characterize the logical conquans, both for the intuitionist and the classical logician.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Nominalist platonism.George Boolos - 1985 - Philosophical Review 94 (3):327-344.
    Download  
     
    Export citation  
     
    Bookmark   218 citations  
  • Logic, Logic, and Logic.George Boolos - 1998 - Cambridge, Mass: Harvard University Press. Edited by Richard C. Jeffrey.
    This collection, nearly all chosen by Boolos himself shortly before his death, includes thirty papers on set theory, second-order logic, and plural quantifiers; ...
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.
    Mathematical realism is the doctrine that mathematical objects really exist, that mathematical statements are either determinately true or determinately false, and that the accepted mathematical axioms are predominantly true. A realist understanding of set theory has it that when the sentences of the language of set theory are understood in their standard meaning, each sentence has a determinate truth value, so that there is a fact of the matter whether the cardinality of the continuum is א2 or whether there are (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Are Our Logical and Mathematical Concepts Highly Indeterminate?Hartry Field - 1994 - Midwest Studies in Philosophy 19 (1):391-429.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Truth and the absence of fact.Hartry H. Field - 2001 - New York: Oxford University Press.
    Presenting a selection of thirteen essays on various topics at the foundations of philosophy--one previously unpublished and eight accompanied by substantial new postscripts--this book offers outstanding insight on truth, meaning, and propositional attitudes; semantic indeterminacy and other kinds of "factual defectiveness;" and issues concerning objectivity, especially in mathematics and in epistemology. It will reward the attention of any philosopher interested in language, epistemology, or mathematics.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Something About Everything: Universal Quantification in the Universal Sense of Universal Quantification.Shaughan Lavine - 2006 - In Agustín Rayo & Gabriel Uzquiano (eds.), Absolute generality. New York: Oxford University Press. pp. 98--148.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • From a Logical Point of View.Willard Orman Quine - 1953 - Harvard University Press.
    Download  
     
    Export citation  
     
    Bookmark   382 citations  
  • Truth and the Absence of Fact.Hartry Field - 2001 - Tijdschrift Voor Filosofie 64 (4):806-807.
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • (1 other version)Symposium: On What there is.P. T. Geach, A. J. Ayer & W. V. Quine - 1948 - Aristotelian Society Supplementary Volume 25 (1):125-160.
    Download  
     
    Export citation  
     
    Bookmark   304 citations