Switch to: References

Citations of:

Computing mechanisms

Philosophy of Science 74 (4):501-526 (2007)

Add citations

You must login to add citations.
  1. Who’s Driving the Syntactic Engine?Emiliano Boccardi - 2009 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (1):23-50.
    The property of being the implementation of a computational structure has been argued to be vacuously instantiated. This claim provides the basis for most antirealist arguments in the field of the philosophy of computation. Standard manoeuvres for combating these antirealist arguments treat the problem as endogenous to computational theories. The contrastive analysis of computational and other mathematical representations put forward here reveals that the problem should instead be treated within the more general framework of the Newman problem in structuralist accounts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a broad variation of models of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rejecting the Received View.Joe Dewhurst - 2014 - Proceedings of the 50th Anniversary Convention of the AISB.
    I defend Piccinini’s mechanistic account of computation against three related criticisms adapted from Sprevak’s critique of non-representational computation. I then argue that this defence highlights a major problem with what Sprevak calls the received view; namely, that representation introduces observer-relativity into our account of computation. I conclude that if we want to retain an objective account of computation, we should reject the received view.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Objective Computation Versus Subjective Computation.Nir Fresco - 2015 - Erkenntnis 80 (5):1031-1053.
    The question ‘What is computation?’ might seem a trivial one to many, but this is far from being in consensus in philosophy of mind, cognitive science and even in physics. The lack of consensus leads to some interesting, yet contentious, claims, such as that cognition or even the universe is computational. Some have argued, though, that computation is a subjective phenomenon: whether or not a physical system is computational, and if so, which computation it performs, is entirely a matter of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The scope and limits of a mechanistic view of computational explanation.Maria Serban - 2015 - Synthese 192 (10):3371-3396.
    An increasing number of philosophers have promoted the idea that mechanism provides a fruitful framework for thinking about the explanatory contributions of computational approaches in cognitive neuroscience. For instance, Piccinini and Bahar :453–488, 2013) have recently argued that neural computation constitutes a sui generis category of physical computation which can play a genuine explanatory role in the context of investigating neural and cognitive processes. The core of their proposal is to conceive of computational explanations in cognitive neuroscience as a subspecies (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What an Algorithm Is.Robin K. Hill - 2016 - Philosophy and Technology 29 (1):35-59.
    The algorithm, a building block of computer science, is defined from an intuitive and pragmatic point of view, through a methodological lens of philosophy rather than that of formal computation. The treatment extracts properties of abstraction, control, structure, finiteness, effective mechanism, and imperativity, and intentional aspects of goal and preconditions. The focus on the algorithm as a robust conceptual object obviates issues of correctness and minimality. Neither the articulation of an algorithm nor the dynamic process constitute the algorithm itself. Analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Exploring a Mechanistic Approach to Experimentation in Computing.Eric Hatleback & Jonathan M. Spring - 2014 - Philosophy and Technology 27 (3):441-459.
    The mechanistic approach in philosophy of science contributes to our understanding of experimental design. Applying the mechanistic approach to experimentation in computing is beneficial for two reasons. It connects the methodology of experimentation in computing with the methodology of experimentation in established sciences, thereby strengthening the scientific reputability of computing and the quality of experimental design therein. Furthermore, it pinpoints the idiosyncrasies of experimentation in computing: computing deals closely with both natural and engineered mechanisms. Better understanding of the idiosyncrasies, which (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience.M. Chirimuuta - 2014 - Synthese 191 (2):127-153.
    In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation in neuroscience to the new territory of computational neuroscience. He presents the model to mechanism mapping (3M) criterion as a condition for a model’s explanatory adequacy. This mechanistic approach is intended to replace earlier accounts which posited a level of computational analysis conceived as distinct and autonomous from underlying mechanistic details. In this paper I discuss work in (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Mechanistic Miscomputation: a Reply to Fresco and Primiero.Joe Dewhurst - 2014 - Philosophy and Technology 27 (3):495-498.
    Fresco and Primiero’s recent article, ‘Miscomputation’ , provides a useful framework with which to think about miscomputation, as well as an admirably broad taxonomy of different kinds of miscomputation. However, it also misconstrues the mechanistic approach to miscomputation, which I will argue should not recognise design errors as miscomputations per se. I argue that a computing mechanism, if it is functioning correctly in the physical sense, cannot miscompute on the basis of an error made by an external agent, such as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The instructional information processing account of digital computation.Nir Fresco & Marty J. Wolf - 2014 - Synthese 191 (7):1469-1492.
    What is nontrivial digital computation? It is the processing of discrete data through discrete state transitions in accordance with finite instructional information. The motivation for our account is that many previous attempts to answer this question are inadequate, and also that this account accords with the common intuition that digital computation is a type of information processing. We use the notion of reachability in a graph to defend this characterization in memory-based systems and underscore the importance of instructional information for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Neural Computation and the Computational Theory of Cognition.Gualtiero Piccinini & Sonya Bahar - 2013 - Cognitive Science 37 (3):453-488.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (1 other version)What Is Nature-Like Computation? A Behavioural Approach and a Notion of Programmability.Hector Zenil - 2013 - Philosophy and Technology (3):1-23.
    The aim of this paper is to propose an alternative behavioural definition of computation (and of a computer) based simply on whether a system is capable of reacting to the environment—the input—as reflected in a measure of programmability. This definition is intended to have relevance beyond the realm of digital computers, particularly vis-à-vis natural systems. This will be done by using an extension of a phase transition coefficient previously defined in an attempt to characterise the dynamical behaviour of cellular automata (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computation, San Diego Style.Oron Shagrir - 2010 - Philosophy of Science 77 (5):862-874.
    What does it mean to say that a physical system computes or, specifically, to say that the nervous system computes? One answer, endorsed here, is that computing is a sort of modeling. I trace this line of answer in the conceptual and philosophical work conducted over the last 3 decades by researchers associated with the University of California, San Diego. The linkage between their work and the modeling notion is no coincidence: the modeling notion aims to account for the computational (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mechanistic explanation without the ontic conception.Cory Wright - 2012 - European Journal of Philosophy of Science 2 (3):375-394.
    The ontic conception of scientific explanation has been constructed and motivated on the basis of a putative lexical ambiguity in the term explanation. I raise a puzzle for this ambiguity claim, and then give a deflationary solution under which all ontically-rendered talk of explanation is merely elliptical; what it is elliptical for is a view of scientific explanation that altogether avoids the ontic conception. This result has revisionary consequences for New Mechanists and other philosophers of science, many of whom have (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Explanation and description in computational neuroscience.David Michael Kaplan - 2011 - Synthese 183 (3):339-373.
    The central aim of this paper is to shed light on the nature of explanation in computational neuroscience. I argue that computational models in this domain possess explanatory force to the extent that they describe the mechanisms responsible for producing a given phenomenon—paralleling how other mechanistic models explain. Conceiving computational explanation as a species of mechanistic explanation affords an important distinction between computational models that play genuine explanatory roles and those that merely provide accurate descriptions or predictions of phenomena. It (...)
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Concrete Digital Computation: What Does it Take for a Physical System to Compute? [REVIEW]Nir Fresco - 2011 - Journal of Logic, Language and Information 20 (4):513-537.
    This paper deals with the question: what are the key requirements for a physical system to perform digital computation? Time and again cognitive scientists are quick to employ the notion of computation simpliciter when asserting basically that cognitive activities are computational. They employ this notion as if there was or is a consensus on just what it takes for a physical system to perform computation, and in particular digital computation. Some cognitive scientists in referring to digital computation simply adhere to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Functional Decomposition: On Rationality and Incommensurability in Engineering.D. Van Eck - unknown
    The concept of technical function is a key concept to describe technical artifacts and artifacts-to-be-designed. Engineers often give such descriptions in terms of functional decomposition models, which represent relationships between functions and sets of other functions. Despite the importance of the concept of function there is no consensus among engineers about its meaning. Models of functional decomposition are likewise conceptually divergent. Although this conceptual diversity hampers information exchange between engineers, they accept and maintain it. Engineers do not, by and large, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Integrating psychology and neuroscience: functional analyses as mechanism sketches.Gualtiero Piccinini & Carl Craver - 2011 - Synthese 183 (3):283-311.
    We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By this process, functional analyses are seamlessly integrated (...)
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Information processing, computation, and cognition.Gualtiero Piccinini & Andrea Scarantino - 2011 - Journal of Biological Physics 37 (1):1-38.
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Analog and digital, continuous and discrete.Corey J. Maley - 2011 - Philosophical Studies 155 (1):117-131.
    Representation is central to contemporary theorizing about the mind/brain. But the nature of representation--both in the mind/brain and more generally--is a source of ongoing controversy. One way of categorizing representational types is to distinguish between the analog and the digital: the received view is that analog representations vary smoothly, while digital representations vary in a step-wise manner. I argue that this characterization is inadequate to account for the ways in which representation is used in cognitive science; in its place, I (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Resilience of Computationalism.Gualtiero Piccinini - 2010 - Philosophy of Science 77 (5):852-861.
    Roughly speaking, computationalism says that cognition is computation, or that cognitive phenomena are explained by the agent‘s computations. The cognitive processes and behavior of agents are the explanandum. The computations performed by the agents‘ cognitive systems are the proposed explanans. Since the cognitive systems of biological organisms are their nervous 1 systems (plus or minus a bit), we may say that according to computationalism, the cognitive processes and behavior of organisms are explained by neural computations. Some people might prefer to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computationalism in the Philosophy of Mind.Gualtiero Piccinini - 2009 - Philosophy Compass 4 (3):515-532.
    Computationalism has been the mainstream view of cognition for decades. There are periodic reports of its demise, but they are greatly exaggerated. This essay surveys some recent literature on computationalism. It concludes that computationalism is a family of theories about the mechanisms of cognition. The main relevant evidence for testing it comes from neuroscience, though psychology and AI are relevant too. Computationalism comes in many versions, which continue to guide competing research programs in philosophy of mind as well as psychology (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • An analysis of the criteria for evaluating adequate theories of computation.Nir Fresco - 2008 - Minds and Machines 18 (3):379-401.
    This paper deals with the question: What are the criteria that an adequate theory of computation has to meet? 1. Smith's answer: it has to meet the empirical criterion (i.e. doing justice to computational practice), the conceptual criterion (i.e. explaining all the underlying concepts) and the cognitive criterion (i.e. providing solid grounds for computationalism). 2. Piccinini's answer: it has to meet the objectivity criterion (i.e. identifying computation as a matter of fact), the explanation criterion (i.e. explaining the computer's behaviour), the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explaining computation without semantics: Keeping it simple.Nir Fresco - 2010 - Minds and Machines 20 (2):165-181.
    This paper deals with the question: how is computation best individuated? -/- 1. The semantic view of computation: computation is best individuated by its semantic properties. 2. The causal view of computation: computation is best individuated by its causal properties. 3. The functional view of computation: computation is best individuated by its functional properties. -/- Some scientific theories explain the capacities of brains by appealing to computations that they supposedly perform. The reason for that is usually that computation is individuated (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Computers.Gualtiero Piccinini - 2008 - Pacific Philosophical Quarterly 89 (1):32–73.
    I offer an explication of the notion of computer, grounded in the practices of computability theorists and computer scientists. I begin by explaining what distinguishes computers from calculators. Then, I offer a systematic taxonomy of kinds of computer, including hard-wired versus programmable, general-purpose versus special-purpose, analog versus digital, and serial versus parallel, giving explicit criteria for each kind. My account is mechanistic: which class a system belongs in, and which functions are computable by which system, depends on the system's mechanistic (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • A Mechanistic Account of Biological Computation.Lorenzo Baravalle & Davide Vecchi - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Wide computationalism revisited: distributed mechanisms, parismony and testability.Luke Kersten - 2024 - Philosophical Explorations 27 (2):1-18.
    Recent years have seen a surge of interest in applying mechanistic thinking to computational accounts of implementation and individuation. One recent extension of this work involves so-called ‘wide’ approaches to computation, the view that computational processes spread out beyond the boundaries of the individual. These ‘mechanistic accounts of wide computation’ maintain that computational processes are wide in virtue of being part of mechanisms that extend beyond the boundary of the individual. This paper aims to further develop the mechanistic account of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing in the nick of time.J. Brendan Ritchie & Colin Klein - 2023 - Ratio 36 (3):169-179.
    The medium‐independence of computational descriptions has shaped common conceptions of computational explanation. So long as our goal is to explain how a system successfully carries out its computations, then we only need to describe the abstract series of operations that achieve the desired input–output mapping, however they may be implemented. It is argued that this abstract conception of computational explanation cannot be applied to so‐called real‐time computing systems, in which meeting temporal deadlines imposed by the systems with which a device (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • When No Laughing Matter Is No Laughing Matter: The Challenges in Developing a Cognitive Theory of Humor.Eric Hochstein - 2021 - The Philosophy of Humor Yearbook 2 (1):87-110.
    This paper explores the current obstacles that a cognitive theory of humor faces. More specifically, I argue that the nebulous and ill-defined nature of humor makes it difficult to tell what counts as clear instances of, and deficits in, the phenomenon.Without getting clear on this, we cannot identify the underlying cognitive mechanisms responsible for humor. Moreover, being too quick to draw generalizations regarding the ubiquity of humor, or its uniqueness to humans, without substantially clarifying the phenomenon and its occurrences is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computational Individuation.Fiona T. Doherty - manuscript
    I show that the indeterminacy problem for computational structuralists is in fact far more problematic than even the harshest critic of structuralism has realised; it is not a bullet which can be bitten by structuralists as previously thought. Roughly, this is because the structural indeterminacy of logic-gates such as AND/OR is caused by the structural identity of the binary computational digits 0/1 themselves. I provide a proof that pure computational structuralism is untenable because structural indeterminacy entails absurd consequences - namely, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The mechanistic stance.Jonny Lee & Joe Dewhurst - 2021 - European Journal for Philosophy of Science 11 (1):1-21.
    It is generally acknowledged by proponents of ‘new mechanism’ that mechanistic explanation involves adopting a perspective, but there is less agreement on how we should understand this perspective-taking or what its implications are for practising science. This paper examines the perspectival nature of mechanistic explanation through the lens of the ‘mechanistic stance’, which falls somewhere between Dennett’s more familiar physical and design stance. We argue this approach implies three distinct and significant ways in which mechanistic explanation can be interpreted as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Eight journals over eight decades: a computational topic-modeling approach to contemporary philosophy of science.Christophe Malaterre, Francis Lareau, Davide Pulizzotto & Jonathan St-Onge - 2020 - Synthese 199 (1-2):2883-2923.
    As a discipline of its own, the philosophy of science can be traced back to the founding of its academic journals, some of which go back to the first half of the twentieth century. While the discipline has been the object of many historical studies, notably focusing on specific schools or major figures of the field, little work has focused on the journals themselves. Here, we investigate contemporary philosophy of science by means of computational text-mining approaches: we apply topic-modeling algorithms (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Contents, vehicles, and complex data analysis in neuroscience.Daniel C. Burnston - 2020 - Synthese 199 (1-2):1617-1639.
    The notion of representation in neuroscience has largely been predicated on localizing the components of computational processes that explain cognitive function. On this view, which I call “algorithmic homuncularism,” individual, spatially and temporally distinct parts of the brain serve as vehicles for distinct contents, and the causal relationships between them implement the transformations specified by an algorithm. This view has a widespread influence in philosophy and cognitive neuroscience, and has recently been ably articulated and defended by Shea. Still, I am (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A prototypical conceptualization of mechanisms.Bryon Cunningham - 2021 - Studies in History and Philosophy of Science Part A 85:79-91.
    Download  
     
    Export citation  
     
    Bookmark  
  • Auditory Perception – Its Functions and Disorders. Towards a Mechanistic Analyses of Auditory Hybrid Systems.Robert Poczobut - 2020 - Studies in Logic, Grammar and Rhetoric 62 (1):207-227.
    The aim of the paper is to present and analyze problems associated with the mechanisms of auditory perception (especially those responsible for speech perception), their specific disorders and functions. I discuss research on speech perception in the broader theoretical context of the mechanistic model of scientific explanation and the perspective of cognitive implantology that explores the possibilities for building hybrid auditory systems.
    Download  
     
    Export citation  
     
    Bookmark  
  • La deriva genética como fuerza evolutiva.Ariel Jonathan Roffé - 2015 - In J. Ahumada, N. Venturelli & S. Seno Chibeni (eds.), Selección de Trabajos del IX Encuentro AFHIC y las XXV Jornadas de Epistemología e Historia de la ciencia. pp. 615-626.
    Download  
     
    Export citation  
     
    Bookmark  
  • How to be concrete: mechanistic computation and the abstraction problem.Luke Kersten - 2020 - Philosophical Explorations 23 (3):251-266.
    This paper takes up a recent challenge to mechanistic approaches to computational implementation, the view that computational implementation is best explicated within a mechanistic framework. The challenge, what has been labelled “the abstraction problem”, claims that one of MAC’s central pillars – medium independence – is deeply confused when applied to the question of computational implementation. The concern is that while it makes sense to say that computational processes are abstract (i.e. medium-independent), it makes considerably less sense to say that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Koherencyjna koncepcja błędu reprezentacyjnego w kontekście badań nad mechanizmami powstawania błędnych reprezentacji pamięciowych.Robert Poczobut - 2020 - Avant: Trends in Interdisciplinary Studies 11 (3).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Dynamicism, radical enactivism, and representational cognitive processes: The case of subitization.Misha Ash & Rex Welshon - 2020 - Tandf: Philosophical Psychology 33 (8):1096-1120.
    Volume 33, Issue 8, November 2020, Page 1096-1120.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Building General Knowledge of Mechanisms in Information Security.Jonathan M. Spring & Phyllis Illari - 2019 - Philosophy and Technology 32 (4):627-659.
    We show how more general knowledge can be built in information security, by the building of knowledge of mechanism clusters, some of which are multifield. By doing this, we address in a novel way the longstanding philosophical problem of how, if at all, we come to have knowledge that is in any way general, when we seem to be confined to particular experiences. We also address the issue of building knowledge of mechanisms by studying an area that is new to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Does the solar system compute the laws of motion?Douglas Ian Campbell & Yi Yang - 2019 - Synthese 198 (4):3203-3220.
    The counterfactual account of physical computation is simple and, for the most part, very attractive. However, it is usually thought to trivialize the notion of physical computation insofar as it implies ‘limited pancomputationalism’, this being the doctrine that every deterministic physical system computes some function. Should we bite the bullet and accept limited pancomputationalism, or reject the counterfactual account as untenable? Jack Copeland would have us do neither of the above. He attempts to thread a path between the two horns (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Malfunction, Mechanisms and Malware Classification.Giuseppe Primiero, Frida J. Solheim & Jonathan M. Spring - 2019 - Philosophy and Technology 32 (2):339-362.
    Malware has been around since the 1980s and is a large and expensive security concern today, constantly growing over the past years. As our social, professional and financial lives become more digitalised, they present larger and more profitable targets for malware. The problem of classifying and preventing malware is therefore urgent, and it is complicated by the existence of several specific approaches. In this paper, we use an existing malware taxonomy to formulate a general, language independent functional description of malware (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • In defense of the semantic view of computation.Oron Shagrir - 2020 - Synthese 197 (9):4083-4108.
    The semantic view of computation is the claim that semantic properties play an essential role in the individuation of physical computing systems such as laptops and brains. The main argument for the semantic view rests on the fact that some physical systems simultaneously implement different automata at the same time, in the same space, and even in the very same physical properties. Recently, several authors have challenged this argument. They accept the premise of simultaneous implementation but reject the semantic conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Computers in Abstraction/Representation Theory.Samuel C. Fletcher - 2018 - Minds and Machines 28 (3):445-463.
    Recently, Horsman et al. have proposed a new framework, Abstraction/Representation theory, for understanding and evaluating claims about unconventional or non-standard computation. Among its attractive features, the theory in particular implies a novel account of what is means to be a computer. After expounding on this account, I compare it with other accounts of concrete computation, finding that it does not quite fit in the standard categorization: while it is most similar to some semantic accounts, it is not itself a semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Making too many enemies: Hutto and Myin’s attack on computationalism.Jesse Kuokkanen & Anna-Mari Rusanen - 2018 - Philosophical Explorations 21 (2):282-294.
    We analyse Hutto & Myin's three arguments against computationalism [Hutto, D., E. Myin, A. Peeters, and F. Zahnoun. Forthcoming. “The Cognitive Basis of Computation: Putting Computation In Its Place.” In The Routledge Handbook of the Computational Mind, edited by M. Sprevak, and M. Colombo. London: Routledge.; Hutto, D., and E. Myin. 2012. Radicalizing Enactivism: Basic Minds Without Content. Cambridge, MA: MIT Press; Hutto, D., and E. Myin. 2017. Evolving Enactivism: Basic Minds Meet Content. Cambridge, MA: MIT Press]. The Hard Problem (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why Separation Logic Works.David Pym, Jonathan M. Spring & Peter O’Hearn - 2019 - Philosophy and Technology 32 (3):483-516.
    One might poetically muse that computers have the essence both of logic and machines. Through the case of the history of Separation Logic, we explore how this assertion is more than idle poetry. Separation Logic works because it merges the software engineer’s conceptual model of a program’s manipulation of computer memory with the logical model that interprets what sentences in the logic are true, and because it has a proof theory which aids in the crucial problem of scaling the reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Review of Physical Computation: A Mechanistic Account by Gualtiero Piccinini - Gualtiero Piccinini, Physical Computation: A Mechanistic Account. Oxford: Oxford University Press (2015), 313 pp., $65.00 (cloth). [REVIEW]Oron Shagrir - 2017 - Philosophy of Science 84 (3):604-612.
    Download  
     
    Export citation  
     
    Bookmark