Switch to: References

Add citations

You must login to add citations.
  1. Defining a crisis: the roles of principles in the search for a theory of quantum gravity.Karen Crowther - 2021 - Synthese 198 (Suppl 14):3489-3516.
    In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required—physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantum gravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of the crisis, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Equivalent Theories and Changing Hamiltonian Observables in General Relativity.J. Brian Pitts - 2018 - Foundations of Physics 48 (5):579-590.
    Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian–Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson–Bergmann–Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Underconsideration in Space-time and Particle Physics.J. Brian Pitts - unknown
    The idea that a serious threat to scientific realism comes from unconceived alternatives has been proposed by van Fraassen, Sklar, Stanford and Wray among others. Peter Lipton's critique of this threat from underconsideration is examined briefly in terms of its logic and its applicability to the case of space-time and particle physics. The example of space-time and particle physics indicates a generic heuristic for quantitative sciences for constructing potentially serious cases of underdetermination, involving one-parameter family of rivals T_m that work (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Are Observables in Hamiltonian Einstein–Maxwell Theory?James Pitts - 2019 - Foundations of Physics 49 (8):786-796.
    Is change missing in Hamiltonian Einstein–Maxwell theory? Given the most common definition of observables, observables are constants of the motion and nonlocal. Unfortunately this definition also implies that the observables for massive electromagnetism with gauge freedom are inequivalent to those of massive electromagnetism without gauge freedom. The alternative Pons–Salisbury–Sundermeyer definition of observables, aiming for Hamiltonian–Lagrangian equivalence, uses the gauge generator G, a tuned sum of first-class constraints, rather than each first-class constraint separately, and implies equivalent observables for equivalent massive electromagnetisms. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Peter Bergmann on observables in Hamiltonian General Relativity: A historical-critical investigation.J. Brian Pitts - 2022 - Studies in History and Philosophy of Science Part A 95 (C):1-27.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Change in Hamiltonian General Relativity with Spinors.J. Brian Pitts - 2021 - Foundations of Physics 51 (6):1-30.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. By construing change as essential time dependence, one can find change locally in vacuum GR in the Hamiltonian formulation just where it should be. But what if spinors are present? This paper is motivated by the tendency in space-time philosophy tends to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Two Slights to Noether's First Theorem: Mental Causation and General Relativity.J. Brian Pitts - unknown
    It is widely held among philosophers that the conservation of energy is true and important, and widely held among philosophers of science that conservation laws and symmetries are tied together by Noether's first theorem. However, beneath the surface of such consensus lie two slights to Noether's first theorem. First, there is a 325+-year controversy about mind-body interaction in relation to the conservation of energy and momentum, with occasional reversals of opinion. The currently popular Leibnizian view, dominant since the late 19th (...)
    Download  
     
    Export citation  
     
    Bookmark