Switch to: References

Add citations

You must login to add citations.
  1. It's a Matter of Principle: Scientific Explanation in Information‐Theoretic Reconstructions of Quantum Theory.Laura Felline - 2016 - Dialectica 70 (4):549-575.
    The aim of this paper is to explore the ways in which Axiomatic Reconstructions of Quantum Theory in terms of Information-Theoretic principles can contribute to explaining and understanding quantum phenomena, as well as to study their explanatory limitations. This is achieved in part by offering an account of the kind of explanation that axiomatic reconstructions of Quantum Theory provide, and re-evaluating the epistemic status of the program in light of this explanation. As illustrative case studies, I take Clifton's, Bub's and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum Logic and Quantum Reconstruction.Allen Stairs - 2015 - Foundations of Physics 45 (10):1351-1361.
    Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why the Tsirelson bound?Jeffrey Bub - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 167--185.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum probabilities as degrees of belief.Jeffrey Bub - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):232-254.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Formalism and Interpretation in Quantum Theory.Alexander Wilce - 2010 - Foundations of Physics 40 (4):434-462.
    Quantum Mechanics can be viewed as a linear dynamical theory having a familiar mathematical framework but a mysterious probabilistic interpretation, or as a probabilistic theory having a familiar interpretation but a mysterious formal framework. These points of view are usually taken to be somewhat in tension with one another. The first has generated a vast literature aiming at a “realistic” and “collapse-free” interpretation of quantum mechanics that will account for its statistical predictions. The second has generated an at least equally (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum Reconstructions as Stepping Stones Toward ψ-Doxastic Interpretations?Philipp Berghofer - 2024 - Foundations of Physics 54 (4):1-24.
    In quantum foundations, there is growing interest in the program of reconstructing the quantum formalism from clear physical principles. These reconstructions are formulated in an operational framework, deriving the formalism from information-theoretic principles. It has been recognized that this project is in tension with standard _ψ-ontic_ interpretations. This paper presupposes that the quantum reconstruction program (QRP) (i) is a worthwhile project and (ii) puts pressure on _ψ-ontic_ interpretations. Where does this leave us? Prima facie, it seems that _ψ-epistemic_ interpretations perfectly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information-Theoretic Interpretation of Quantum Formalism.Michel Feldmann - 2023 - Foundations of Physics 53 (3):1-59.
    We present an information-theoretic interpretation of quantum formalism based on a Bayesian framework and devoid of any extra axiom or principle. Quantum information is construed as a technique for analyzing a logical system subject to classical constraints, based on a question-and-answer procedure. The problem is posed from a particular batch of queries while the constraints are represented by the truth table of a set of Boolean functions. The Bayesian inference technique consists in assigning a probability distribution within a real-valued probability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Random World and Quantum Mechanics.Jerzy Król, Krzysztof Bielas & Torsten Asselmeyer-Maluga - 2023 - Foundations of Science 28 (2):575-625.
    Quantum mechanics (QM) predicts probabilities on the fundamental level which are, via Born probability law, connected to the formal randomness of infinite sequences of QM outcomes. Recently it has been shown that QM is algorithmic 1-random in the sense of Martin–Löf. We extend this result and demonstrate that QM is algorithmic $$\omega$$ -random and generic, precisely as described by the ’miniaturisation’ of the Solovay forcing to arithmetic. This is extended further to the result that QM becomes Zermelo–Fraenkel Solovay random on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Essay Review of Tanya and Jeffrey Bub’s Totally Random: Why Nobody Understands Quantum Mechanics: A Serious Comic on Entanglement: Princeton and Oxford: Princeton University Press (2018), ISBN: 9780691176956, 272 pp., £18.99 / $22.95. [REVIEW]Michael E. Cuffaro & Emerson P. Doyle - 2021 - Foundations of Physics 51 (1):1-16.
    This is an extended essay review of Tanya and Jeffrey Bub’s Totally Random: Why Nobody Understands Quantum Mechanics: A serious comic on entanglement. We review the philosophical aspects of the book, provide suggestions for instructors on how to use the book in a class setting, and evaluate the authors’ artistic choices in the context of comics theory. Although Totally Random does not defend any particular interpretation of quantum mechanics, we find that, in its mode of presentation, Totally Random is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Putting probabilities first. How Hilbert space generates and constrains them.Michael Janas, Michael Cuffaro & Michel Janssen - manuscript
    We use Bub's (2016) correlation arrays and Pitowksy's (1989b) correlation polytopes to analyze an experimental setup due to Mermin (1981) for measurements on the singlet state of a pair of spin-12 particles. The class of correlations allowed by quantum mechanics in this setup is represented by an elliptope inscribed in a non-signaling cube. The class of correlations allowed by local hidden-variable theories is represented by a tetrahedron inscribed in this elliptope. We extend this analysis to pairs of particles of arbitrary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum theory is not only about information.Laura Felline - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:256-265.
    In his recent book Bananaworld. Quantum mechanics for primates, Jeff Bub revives and provides a mature version of his influential information-theoretic interpretation of Quantum Theory (QT). In this paper, I test Bub’s conjecture that QT should be interpreted as a theory about information, by examining whether his information-theoretic interpretation has the resources to explain (or explain away) quantum conundrums. The discussion of Bub’s theses will also serve to investigate, more in general, whether other approaches succeed in defending the claim that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Deciding the Mind–Body Problem Experimentally.Pierre Uzan - 2017 - Axiomathes 27 (4):333-354.
    A Bell-type strategy of decision for the long-standing question of the nature of psychophysical correlations has been previously presented in a recent article published in Mind and Matter. This strategy of decision is here applied to experimental data on psychophysiological correlations, namely, correlations between cardiovascular and emotional variables that have been reported in several independent publications. This statistical analysis shows that a substantial majority of these correlations cannot be interpreted as an exchange of signals or a mere “interaction”, whatever its (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. In the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Theory as a Critical Regime of Language Dynamics.Alexei Grinbaum - 2015 - Foundations of Physics 45 (10):1341-1350.
    Some mathematical theories in physics justify their explanatory superiority over earlier formalisms by the clarity of their postulates. In particular, axiomatic reconstructions drive home the importance of the composition rule and the continuity assumption as two pillars of quantum theory. Our approach sits on these pillars and combines new mathematics with a testable prediction. If the observer is defined by a limit on string complexity, information dynamics leads to an emergent continuous model in the critical regime. Restricting it to a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relational Hidden Variables and Non-Locality.Samson Abramsky - 2013 - Studia Logica 101 (2):411-452.
    We use a simple relational framework to develop the key notions and results on hidden variables and non-locality. The extensive literature on these topics in the foundations of quantum mechanics is couched in terms of probabilistic models, and properties such as locality and no-signalling are formulated probabilistically. We show that to a remarkable extent, the main structure of the theory, through the major No-Go theorems and beyond, survives intact under the replacement of probability distributions by mere relations.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (11 other versions)Философия на квантовата информация.Vasil Penchev - 2009 - Sofia: BAS: IPhR.
    The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is entanglement. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The effectiveness of mathematics in physics of the unknown.Alexei Grinbaum - 2019 - Synthese 196 (3):973-989.
    If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner’s argument in 1960. I show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Analogues of Hardy’s Nonlocality Paradox.Tobias Fritz - 2011 - Foundations of Physics 41 (9):1493-1501.
    Hardy’s nonlocality is a “nonlocality proof without inequalities”: it exemplifies that quantum correlations can be qualitatively stronger than classical correlations. This paper introduces variants of Hardy’s nonlocality in the CHSH scenario which are realized by the PR-box, but not by quantum correlations. Hence this new kind of Hardy-type nonlocality is a proof without inequalities showing that superquantum correlations can be qualitatively stronger than quantum correlations.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Bananaworld nonlocal?Allen Stairs - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:301-309.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalized Greenberger–Horne–Zeilinger Arguments from Quantum Logical Analysis.Karl Svozil - 2021 - Foundations of Physics 52 (1):1-23.
    The Greenberger–Horne–Zeilinger argument against noncontextual local hidden variables is recast in quantum logical terms of fundamental propositions, states and probabilities. Unlike Kochen–Specker- and Hardy-like configurations, this operator based argument proceeds within four nonintertwining contexts. The nonclassical performance of the GHZ argument is due to the choice or filtering of observables with respect to a particular state. We study the varieties of GHZ games one could play in these four contexts, depending on the chosen state of the GHZ basis.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How is there a Physics of Information? On characterising physical evolution as information processing.O. J. E. Maroney & C. G. Timpson - unknown
    We have a conundrum. The physical basis of information is clearly a highly active research area. Yet the power of information theory comes precisely from separating it from the detailed problems of building physical systems to perform information processing tasks. Developments in quantum information over the last two decades seem to have undermined this separation, leading to suggestions that information is itself a physical entity and must be part of our physical theories, with resource-cost implications. We will consider a variety (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum reaxiomatisations and information-theoretic interpretations of quantum theory.Leah Henderson - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:292-300.
    Jeff Bub has developed an information-theoretic interpretation of quantum mechanics on the basis of the programme to reaxiomatise the theory in terms of information-theoretic principles. According to the most recent version of the interpretation, reaxiomatisation can dissolve some of the demands for explanation traditionally associated with the task of providing an interpretation for the theory. The key idea is that the real lesson we should take away from quantum mechanics is that the ‘structure of in- formation’ is not what we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Communication Strength of Correlations Violating Monogamy Relations.Waldemar Kłobus, Michał Oszmaniec, Remigiusz Augusiak & Andrzej Grudka - 2016 - Foundations of Physics 46 (5):620-634.
    In any theory satisfying the no-signaling principle correlations generated among spatially separated parties in a Bell-type experiment are subject to certain constraints known as monogamy relations. Recently, in the context of the black hole information loss problem it was suggested that these monogamy relations might be violated. This in turn implies that correlations arising in such a scenario must violate the no-signaling principle and hence can be used to send classical information between parties. Here, we study the amount of information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Communication Complexity as a Principle of Quantum Mechanics.Adán Cabello - 2006 - Foundations of Physics 36 (4):512-525.
    We introduce a two-party communication complexity problem in which the probability of success by using a particular strategy allows the parties to detect with certainty whether or not some forbidden communication has taken place. We show that theprobability of success is bounded by nature; any conceivable method which gives a probability of success outside these bounds is impossible. Moreover, any conceivable method to solve the problem which gives a probability success within these bounds is possible in nature. This example suggests (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Ontology of Nature with Local Causality, Parallel Lives, and Many Relative Worlds.Mordecai Waegell - 2018 - Foundations of Physics 48 (12):1698-1730.
    Parallel lives is an ontological model of nature in which quantum mechanics and special relativity are unified in a single universe with a single space-time. Point-like objects called lives are the only fundamental objects in this space-time, and they propagate at or below c, and interact with one another only locally at point-like events in space-time, very much like classical point particles. Lives are not alive in any sense, nor do they possess consciousness or any agency to make decisions—they are (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Understanding quantum phenomena and quantum theories.Armond Duwell - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:278-291.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Locality.Robert B. Griffiths - 2011 - Foundations of Physics 41 (4):705-733.
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Bell Nonlocality, Signal Locality and Unpredictability (or What Bohr Could Have Told Einstein at Solvay Had He Known About Bell Experiments).Eric G. Cavalcanti & Howard M. Wiseman - 2012 - Foundations of Physics 42 (10):1329-1338.
    The 1964 theorem of John Bell shows that no model that reproduces the predictions of quantum mechanics can simultaneously satisfy the assumptions of locality and determinism. On the other hand, the assumptions of signal locality plus predictability are also sufficient to derive Bell inequalities. This simple theorem, previously noted but published only relatively recently by Masanes, Acin and Gisin, has fundamental implications not entirely appreciated. Firstly, nothing can be concluded about the ontological assumptions of locality or determinism independently of each (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Information Invariance and Quantum Probabilities.Časlav Brukner & Anton Zeilinger - 2009 - Foundations of Physics 39 (7):677-689.
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Interferometric Computation Beyond Quantum Theory.Andrew J. P. Garner - 2018 - Foundations of Physics 48 (8):886-909.
    There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What’s It Like to Be a Universe: Implications of Being In, Of, and About a Brain, or a Speculative Panconsciousness Approach to Quantum Nonlocality.David Robert Gruber - 2022 - Journal of Speculative Philosophy 36 (3):323-339.
    ABSTRACT The problem of quantum nonlocality references instantaneous entanglements happening between particles at great distances, putting under question physical assumptions about time and local effects. Despite a wide range of proposed solutions in physics, the problem persists; however, due to the recent interest in panconsciousness and panpsychism in philosophy as well as numerous suggestions that consciousness and quantum physics are intimately related, I argue in favor of thinking strange quantum effects—and nonlocality as case in point—in lieu of conscious activity happening (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Defining the Hamiltonian Beyond Quantum Theory.Dominic Branford, Oscar C. O. Dahlsten & Andrew J. P. Garner - 2018 - Foundations of Physics 48 (8):982-1006.
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories—a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Contextuality and Nonlocality in 'No Signaling' Theories.Jeffrey Bub & Allen Stairs - 2009 - Foundations of Physics 39 (7):690-711.
    We define a family of ‘no signaling’ bipartite boxes with arbitrary inputs and binary outputs, and with a range of marginal probabilities. The defining correlations are motivated by the Klyachko version of the Kochen-Specker theorem, so we call these boxes Kochen-Specker-Klyachko boxes or, briefly, KS-boxes. The marginals cover a variety of cases, from those that can be simulated classically to the superquantum correlations that saturate the Clauser-Horne-Shimony-Holt inequality, when the KS-box is a generalized PR-box (hence a vertex of the ‘no (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Causality, Measurement, and Elementary Interactions.Edward J. Gillis - 2011 - Foundations of Physics 41 (12):1757-1785.
    Signal causality, the prohibition of superluminal information transmission, is the fundamental property shared by quantum measurement theory and relativity, and it is the key to understanding the connection between nonlocal measurement effects and elementary interactions. To prevent those effects from transmitting information between the generating and observing process, they must be induced by the kinds of entangling interactions that constitute measurements, as implied in the Projection Postulate. They must also be nondeterministic as reflected in the Born Probability Rule. The nondeterminism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos.Melanie Frappier, Derek Brown & Robert DiSalle (eds.) - 2011 - Dordrecht and London: Springer.
    The essays in this volume concern the points of intersection between analytic philosophy and the philosophy of the exact sciences. More precisely, it concern connections between knowledge in mathematics and the exact sciences, on the one hand, and the conceptual foundations of knowledge in general. Its guiding idea is that, in contemporary philosophy of science, there are profound problems of theoretical interpretation-- problems that transcend both the methodological concerns of general philosophy of science, and the technical concerns of philosophers of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reconstructing instead of interpreting quantum theory.Alexei Grinbaum - 2007 - Philosophy of Science 74 (5):761-774.
    A paradigmatic shift in the foundations of quantum mechanics is recorded, from interpreting to reconstructing quantum theory. Examples of reconstruction are analyzed, and conceptual foundations of the information-theoretic reconstruction developed. A concept of intentionally incomplete reconstruction is introduced to mark the novel content of research in the foundation of quantum theory. ‡Many thanks to Lucien Hardy, Jeff Bub and Bill Demopoulos for their comments. This research was supported through the ANR grant ANR-06-BLAN-0348-01. Part of this research was held at the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • No-signaling in topos formulation and a common ontological basis for classical and non-classical physical theories.Marek Kuś - 2020 - Philosophical Problems in Science 69:129-143.
    Starting from logical structures of classical and quantum mechanics we reconstruct the logic of so-called no-signaling theories, where the correlations among subsystems of a composite system are restricted only by a simplest form of causality forbidding an instantaneous communication. Although such theories are, as it seems, irrelevant for the description of physical reality, they are helpful in understanding the relevance of quantum mechanics. The logical structure of each theory has an epistemological flavor, as it is based on analysis of possible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hiding Information in Theories Beyond Quantum Mechanics, and It’s Application to the Black Hole Information Problem.Markus P. Müller, Jonathan Oppenheim & Oscar C. O. Dahlsten - 2014 - Foundations of Physics 44 (8):829-842.
    The black hole information problem provides important clues for trying to piece together a quantum theory of gravity. Discussions on this topic have generally assumed that in a consistent theory of gravity and quantum mechanics, quantum theory is unmodified. In this review, we discuss the black hole information problem in the context of generalisations of quantum theory. In this preliminary exploration, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Stronger-Than-Quantum Correlations.G. Krenn & K. Svozil - 1998 - Foundations of Physics 28 (6):971-984.
    After an elementary derivation of Bell's inequality, classical, quantum mechanical, and stronger-than-quantum correlation functions for 2-particle-systems are discussed. Special functions are investigated which give rise to an extreme violation of Bell's inequality by the value of 4. Referring to a specific quantum system it is shown that under certain conditions such an extreme violation would contradict basic laws of physics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three-Slit Experiments and Quantum Nonlocality.Gerd Niestegge - 2013 - Foundations of Physics 43 (6):805-812.
    An interesting link between two very different physical aspects of quantum mechanics is revealed; these are the absence of third-order interference and Tsirelson’s bound for the nonlocal correlations. Considering multiple-slit experiments—not only the traditional configuration with two slits, but also configurations with three and more slits—Sorkin detected that third-order (and higher-order) interference is not possible in quantum mechanics. The EPR experiments show that quantum mechanics involves nonlocal correlations which are demonstrated in a violation of the Bell or CHSH inequality, but (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • GHZ States as Tripartite PR Boxes: Classical Limit and Retrocausality.Daniel Rohrlich & Guy Hetzroni - 2018 - Entropy 20 (6):478.
    We review an argument that bipartite "PR-box" correlations, though designed to respect relativistic causality, in fact violate relativistic causality in the classical limit. As a test of this argument, we consider Greenberger-Horne-Zeilinger (GHZ) correlations as a tripartite version of PR-box correlations, and ask whether the argument extends to GHZ correlations. If it does-i.e., if it shows that GHZ correlations violate relativistic causality in the classical limit-then the argument must be incorrect (since GHZ correlations do respect relativistic causality in the classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information causality, the Tsirelson bound, and the ‘being-thus’ of things.Michael E. Cuffaro - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:266-277.
    The principle of 'information causality' can be used to derive an upper bound---known as the 'Tsirelson bound'---on the strength of quantum mechanical correlations, and has been conjectured to be a foundational principle of nature. In this paper, however, I argue that the principle has not to date been sufficiently motivated to play this role; the motivations that have so far been given are either unsatisfactorily vague or else amount to little more than an appeal to intuition. I then consider how (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conceptions of space-time: Problems and possible solutions.Nicholas A. M. Monk - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (1):1-34.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hardy’s Non-locality Paradox and Possibilistic Conditions for Non-locality.Shane Mansfield & Tobias Fritz - 2012 - Foundations of Physics 42 (5):709-719.
    Hardy’s non-locality paradox is a proof without inequalities showing that certain non-local correlations violate local realism. It is ‘possibilistic’ in the sense that one only distinguishes between possible outcomes (positive probability) and impossible outcomes (zero probability). Here we show that Hardy’s paradox is quite universal: in any (2,2,l) or (2,k,2) Bell scenario, the occurrence of Hardy’s paradox is a necessary and sufficient condition for possibilistic non-locality. In particular, it subsumes all ladder paradoxes. This universality of Hardy’s paradox is not true (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert space gone bananas (again).Florian J. Boge - 2022 - Metascience 31 (3):361-364.
    Download  
     
    Export citation  
     
    Bookmark  
  • A generalized definition of Bell’s local causality.Gábor Hofer-Szabó & Péter Vecsernyés - 2016 - Synthese 193 (10).
    This paper aims to implement Bell’s notion of local causality into a framework, called local physical theory, which is general enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will then arise as the classical case of our definition. First, we investigate what is needed for a local physical theory to be locally causal. Then we compare local causality with Reichenbach’s common cause principle and relate both to the Bell (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On local realism and commutativity.Allen Stairs & Jeffrey Bub - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):863-878.
    Download  
     
    Export citation  
     
    Bookmark  
  • Contextuality in Three Types of Quantum-Mechanical Systems.Ehtibar N. Dzhafarov, Janne V. Kujala & Jan-Åke Larsson - 2015 - Foundations of Physics 45 (7):762-782.
    We present a formal theory of contextuality for a set of random variables grouped into different subsets corresponding to different, mutually incompatible conditions. Within each context the random variables are jointly distributed, but across different contexts they are stochastically unrelated. The theory of contextuality is based on the analysis of the extent to which some of these random variables can be viewed as preserving their identity across different contexts when one considers all possible joint distributions imposed on the entire set (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Foundations of quantum gravity: The role of principles grounded in empirical reality.Marc Holman - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46 (2):142-153.
    When attempting to assess the strengths and weaknesses of various principles in their potential role of guiding the formulation of a theory of quantum gravity, it is crucial to distinguish between principles which are strongly supported by empirical data – either directly or indirectly – and principles which instead rely heavily on theoretical arguments for their justification. Principles in the latter category are not necessarily invalid, but their a priori foundational significance should be regarded with due caution. These remarks are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Noncontextuality with marginal selectivity in reconstructing mental architectures.Ru Zhang & Ehtibar N. Dzhafarov - 2015 - Frontiers in Psychology 6:146136.
    We present a general theory of series-parallel mental architectures with selectively influenced stochastically non-independent components. A mental architecture is a hypothetical network of processes aimed at performing a task, of which we only observe the overall time it takes under variable parameters of the task. It is usually assumed that the network contains several processes selectively influenced by different experimental factors, and then the question is asked as to how these processes are arranged within the network, e.g., whether they are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation