Switch to: References

Citations of:

A note on mathematical pluralism and logical pluralism

Synthese 198 (Suppl 20):4937-4946 (2019)

Add citations

You must login to add citations.
  1. A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How Do You Apply Mathematics?Graham Priest - 2022 - Axiomathes 32 (3):1169-1184.
    As far as disputes in the philosophy of pure mathematics goes, these are usually between classical mathematics, intuitionist mathematics, paraconsistent mathematics, and so on. My own view is that of a mathematical pluralist: all these different kinds of mathematics are equally legitimate. Applied mathematics is a different matter. In this, a piece of pure mathematics is applied in an empirical area, such as physics, biology, or economics. There can then certainly be a disputes about what the correct pure mathematics to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Open texture, rigor, and proof.Benjamin Zayton - 2022 - Synthese 200 (4):1-20.
    Open texture is a kind of semantic indeterminacy first systematically studied by Waismann. In this paper, extant definitions of open texture will be compared and contrasted, with a view towards the consequences of open-textured concepts in mathematics. It has been suggested that these would threaten the traditional virtues of proof, primarily the certainty bestowed by proof-possession, and this suggestion will be critically investigated using recent work on informal proof. It will be argued that informal proofs have virtues that mitigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Contradictions and rationality in the context of the doctrine of the Incarnation.Susana Gómez Gutiérrez - 2023 - Asian Journal of Philosophy 2 (2):1-21.
    In this paper, I respond to what I have called an epistemological objection to a dialetheist approach to the doctrine of the Incarnation, of which one example is Beall’s contradictory Christ. I discuss Anderson’s book Paradox in Christian theology, in which the author claims to account for the rationality of the doctrine of the Incarnation as a merely apparently contradictory doctrine, and I present my model, based on Anderson’s model, according to which the doctrine has the possibility to be rational (...)
    Download  
     
    Export citation  
     
    Bookmark