Switch to: References

Add citations

You must login to add citations.
  1. Transfinite Cardinals in Paraconsistent Set Theory.Zach Weber - 2012 - Review of Symbolic Logic 5 (2):269-293.
    This paper develops a (nontrivial) theory of cardinal numbers from a naive set comprehension principle, in a suitable paraconsistent logic. To underwrite cardinal arithmetic, the axiom of choice is proved. A new proof of Cantor’s theorem is provided, as well as a method for demonstrating the existence of large cardinals by way of a reflection theorem.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Notes on the Model Theory of DeMorgan Logics.Thomas Macaulay Ferguson - 2012 - Notre Dame Journal of Formal Logic 53 (1):113-132.
    We here make preliminary investigations into the model theory of DeMorgan logics. We demonstrate that Łoś's Theorem holds with respect to these logics and make some remarks about standard model-theoretic properties in such contexts. More concretely, as a case study we examine the fate of Cantor's Theorem that the classical theory of dense linear orderings without endpoints is $\aleph_{0}$-categorical, and we show that the taking of ultraproducts commutes with respect to previously established methods of constructing nonclassical structures, namely, Priest's Collapsing (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Is there an inconsistent primitive recursive relation?Seungrak Choi - 2022 - Synthese 200 (5):1-12.
    The present paper focuses on Graham Priest’s claim that even primitive recursive relations may be inconsistent. Although he carefully presented his claim using the expression “may be,” Priest made a definite claim that even numerical equations can be inconsistent. His argument relies heavily on the fact that there is an inconsistent model for arithmetic. After summarizing Priest’s argument for the inconsistent primitive recursive relation, I first discuss the fact that his argument has a weak foundation to explain that the existence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How Do You Apply Mathematics?Graham Priest - 2022 - Axiomathes 32 (3):1169-1184.
    As far as disputes in the philosophy of pure mathematics goes, these are usually between classical mathematics, intuitionist mathematics, paraconsistent mathematics, and so on. My own view is that of a mathematical pluralist: all these different kinds of mathematics are equally legitimate. Applied mathematics is a different matter. In this, a piece of pure mathematics is applied in an empirical area, such as physics, biology, or economics. There can then certainly be a disputes about what the correct pure mathematics to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Contradictions and falling bridges: what was Wittgenstein’s reply to Turing?Ásgeir Berg Matthíasson - 2020 - British Journal for the History of Philosophy 29 (3).
    In this paper, I offer a close reading of Wittgenstein's remarks on inconsistency, mostly as they appear in the Lectures on the Foundations of Mathematics. I focus especially on an objection to Wittgenstein's view given by Alan Turing, who attended the lectures, the so-called ‘falling bridges’-objection. Wittgenstein's position is that if contradictions arise in some practice of language, they are not necessarily fatal to that practice nor necessitate a revision of that practice. If we then assume that we have adopted (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Would a Phenomenology of Logic Look Like?James Kinkaid - 2020 - Mind 129 (516):1009-1031.
    The phenomenological movement begins in the Prolegomena to Husserl’s Logical Investigations as a philosophy of logic. Despite this, remarkably little attention has been paid to Husserl’s arguments in the Prolegomena in the contemporary philosophy of logic. In particular, the literature spawned by Gilbert Harman’s work on the normative status of logic is almost silent on Husserl’s contribution to this topic. I begin by raising a worry for Husserl’s conception of ‘pure logic’ similar to Harman’s challenge to explain the connection between (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On elimination of quantifiers in some non‐classical mathematical theories.Guillermo Badia & Andrew Tedder - 2018 - Mathematical Logic Quarterly 64 (3):140-154.
    Elimination of quantifiers is shown to fail dramatically for a group of well‐known mathematical theories (classically enjoying the property) against a wide range of relevant logical backgrounds. Furthermore, it is suggested that only by moving to more extensional underlying logics can we get the property back.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dunn–Priest Quotients of Many-Valued Structures.Thomas Macaulay Ferguson - 2017 - Notre Dame Journal of Formal Logic 58 (2):221-239.
    J. Michael Dunn’s Theorem in 3-Valued Model Theory and Graham Priest’s Collapsing Lemma provide the means of constructing first-order, three-valued structures from classical models while preserving some control over the theories of the ensuing models. The present article introduces a general construction that we call a Dunn–Priest quotient, providing a more general means of constructing models for arbitrary many-valued, first-order logical systems from models of any second system. This technique not only counts Dunn’s and Priest’s techniques as special cases, but (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Resisting Non-causal Explanations.Otávio Bueno & Melisa Vivanco - 2019 - Analysis 79 (3):550-559.
    Download  
     
    Export citation  
     
    Bookmark  
  • Inconsistency in mathematics and the mathematics of inconsistency.Jean Paul van Bendegem - 2014 - Synthese 191 (13):3063-3078.
    No one will dispute, looking at the history of mathematics, that there are plenty of moments where mathematics is “in trouble”, when paradoxes and inconsistencies crop up and anomalies multiply. This need not lead, however, to the view that mathematics is intrinsically inconsistent, as it is compatible with the view that these are just transient moments. Once the problems are resolved, consistency (in some sense or other) is restored. Even when one accepts this view, what remains is the question what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Feng Ye. Strict Finitism and the Logic of Mathematical Applications.Nigel Vinckier & Jean Paul Van Bendegem - 2016 - Philosophia Mathematica 24 (2):247-256.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Note on Priest's Finite Inconsistent Arithmetics.J. B. Paris & N. Pathmanathan - 2006 - Journal of Philosophical Logic 35 (5):529-537.
    We give a complete characterization of Priest's Finite Inconsistent Arithmetics observing that his original putative characterization included arithmetics which cannot in fact be realized.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Axioms for finite collapse models of arithmetic.Andrew Tedder - 2015 - Review of Symbolic Logic 8 (3):529-539.
    The collapse models of arithmetic are inconsistent, nontrivial models obtained from ℕ and set out in the Logic of Paradox (LP). They are given a general treatment by Priest (Priest, 2000). Finite collapse models are decidable, and thus axiomatizable, because finite. LP, however, is ill-suited to normal axiomatic reasoning, as it invalidates Modus Ponens, and almost all other usual conditional inferences. I set out a logic, A3, first given by Avron (Avron, 1991), and give a first order axiom system for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On a First-Order Bi-Sorted Semantically Closed Language.Fernanda Birolli Abrahão & Edelcio Gonçalves de Souza - forthcoming - Studia Logica:1-13.
    This paper is about the concept of semantically closed languages. Roughly speaking, those are languages which can name their own sentences and apply to them semantic predicates, such as the truth or satisfaction predicates. Hence, they are “self-referential languages,” in the sense that they are capable of producing sentences about themselves or other sentences in the same language. In section one, we introduce the concept informally; in section two, we provide the formal definition of first-order semantically closed languages, which is (...)
    Download  
     
    Export citation  
     
    Bookmark