Switch to: References

Add citations

You must login to add citations.
  1. Consequences of a Functional Account of Information.Stephen Francis Mann - 2018 - Review of Philosophy and Psychology 11 (3):1-19.
    This paper aims to establish several interconnected points. First, a particular interpretation of the mathematical definition of information, known as the causal interpretation, is supported largely by misunderstandings of the engineering context from which it was taken. A better interpretation, which makes the definition and quantification of information relative to the function of its user, is outlined. The first half of the paper is given over to introducing communication theory and its competing interpretations. The second half explores three consequences of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.Hongjing Lu, Randall R. Rojas, Tom Beckers & Alan L. Yuille - 2016 - Cognitive Science 40 (2):404-439.
    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Graph‐Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory.Thomas M. Gruenenfelder, Gabriel Recchia, Tim Rubin & Michael N. Jones - 2016 - Cognitive Science 40 (6):1460-1495.
    We compared the ability of three different contextual models of lexical semantic memory and of a simple associative model to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Effects of Feature-Label-Order and Their Implications for Symbolic Learning.Michael Ramscar, Daniel Yarlett, Melody Dye, Katie Denny & Kirsten Thorpe - 2010 - Cognitive Science 34 (6):909-957.
    Symbols enable people to organize and communicate about the world. However, the ways in which symbolic knowledge is learned and then represented in the mind are poorly understood. We present a formal analysis of symbolic learning—in particular, word learning—in terms of prediction and cue competition, and we consider two possible ways in which symbols might be learned: by learning to predict a label from the features of objects and events in the world, and by learning to predict features from a (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Models, Mechanisms, and Animal Minds.Colin Allen - 2014 - Southern Journal of Philosophy 52 (S1):75-97.
    In this paper, I describe grounds for dissatisfaction with certain aspects of the sciences of animal cognition and argue that a turn toward mathematical modeling of animal cognition is warranted. I consider some objections to this call and argue that the implications of such a turn are not as drastic for ordinary, commonsense understanding of animal minds as they might seem.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Prospects for Probabilistic Theories of Natural Information.Ulrich E. Stegmann - 2015 - Erkenntnis 80 (4):869-893.
    Much recent work on natural information has focused on probabilistic theories, which construe natural information as a matter of probabilistic relations between events or states. This paper assesses three variants of probabilistic theories (due to Millikan, Shea, and Scarantino and Piccinini). I distinguish between probabilistic theories as (1) attempts to reveal why probabilistic relations are important for human and non-human animals and as (2) explications of the information concept(s) employed in the sciences. I argue that the strength of probabilistic theories (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations