- Elementary canonical formulae: extending Sahlqvist’s theorem.Valentin Goranko & Dimiter Vakarelov - 2006 - Annals of Pure and Applied Logic 141 (1):180-217.details
|
|
A Sahlqvist theorem for substructural logic.Tomoyuki Suzuki - 2013 - Review of Symbolic Logic 6 (2):229-253.details
|
|
Notions of density that imply representability in algebraic logic.Hajnal Andréka, Steven Givant, Szabolcs Mikulás, István Németi & András Simon - 1998 - Annals of Pure and Applied Logic 91 (2-3):93-190.details
|
|
Canonicity results of substructural and lattice-based logics.Tomoyuki Suzuki - 2011 - Review of Symbolic Logic 4 (1):1-42.details
|
|
Mathematical modal logic: A view of its evolution.Robert Goldblatt - 2003 - Journal of Applied Logic 1 (5-6):309-392.details
|
|
Erdős graphs resolve fine's canonicity problem.Robert Goldblatt, Ian Hodkinson & Yde Venema - 2004 - Bulletin of Symbolic Logic 10 (2):186-208.details
|
|
Meet-completions and ordered domain algebras.R. Egrot & Robin Hirsch - 2015 - Logic Journal of the IGPL 23 (4):584-600.details
|
|
The logic of Peirce algebras.Maarten De Rijke - 1995 - Journal of Logic, Language and Information 4 (3):227-250.details
|
|
Algorithmic correspondence and canonicity for non-distributive logics.Willem Conradie & Alessandra Palmigiano - 2019 - Annals of Pure and Applied Logic 170 (9):923-974.details
|
|
(1 other version)Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Modeltheoretic Aspects.W. Conradie, V. Goranko & D. Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 17-51.details
|
|