Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2022 - AI and Society 37 (1):215-230.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research.Markus Langer, Daniel Oster, Timo Speith, Lena Kästner, Kevin Baum, Holger Hermanns, Eva Schmidt & Andreas Sesing - 2021 - Artificial Intelligence 296 (C):103473.
    Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these “stakeholders' desiderata”) in a variety of contexts. However, the literature on XAI is vast, spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata. This paper discusses the main classes of stakeholders calling for explainability (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Tragic Choices and the Virtue of Techno-Responsibility Gaps.John Danaher - 2022 - Philosophy and Technology 35 (2):1-26.
    There is a concern that the widespread deployment of autonomous machines will open up a number of ‘responsibility gaps’ throughout society. Various articulations of such techno-responsibility gaps have been proposed over the years, along with several potential solutions. Most of these solutions focus on ‘plugging’ or ‘dissolving’ the gaps. This paper offers an alternative perspective. It argues that techno-responsibility gaps are, sometimes, to be welcomed and that one of the advantages of autonomous machines is that they enable us to embrace (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Levels of explicability for medical artificial intelligence: What do we normatively need and what can we technically reach?Frank Ursin, Felix Lindner, Timo Ropinski, Sabine Salloch & Cristian Timmermann - 2023 - Ethik in der Medizin 35 (2):173-199.
    Definition of the problem The umbrella term “explicability” refers to the reduction of opacity of artificial intelligence (AI) systems. These efforts are challenging for medical AI applications because higher accuracy often comes at the cost of increased opacity. This entails ethical tensions because physicians and patients desire to trace how results are produced without compromising the performance of AI systems. The centrality of explicability within the informed consent process for medical AI systems compels an ethical reflection on the trade-offs. Which (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Transparency and the Black Box Problem: Why We Do Not Trust AI.Warren J. von Eschenbach - 2021 - Philosophy and Technology 34 (4):1607-1622.
    With automation of routine decisions coupled with more intricate and complex information architecture operating this automation, concerns are increasing about the trustworthiness of these systems. These concerns are exacerbated by a class of artificial intelligence that uses deep learning, an algorithmic system of deep neural networks, which on the whole remain opaque or hidden from human comprehension. This situation is commonly referred to as the black box problem in AI. Without understanding how AI reaches its conclusions, it is an open (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Algorithmic decision-making: the right to explanation and the significance of stakes.Lauritz Munch, Jens Christian Bjerring & Jakob Mainz - 2024 - Big Data and Society.
    The stakes associated with an algorithmic decision are often said to play a role in determining whether the decision engenders a right to an explanation. More specifically, “high stakes” decisions are often said to engender such a right to explanation whereas “low stakes” or “non-high” stakes decisions do not. While the overall gist of these ideas is clear enough, the details are lacking. In this paper, we aim to provide these details through a detailed investigation of what we will call (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explicability of artificial intelligence in radiology: Is a fifth bioethical principle conceptually necessary?Frank Ursin, Cristian Timmermann & Florian Steger - 2022 - Bioethics 36 (2):143-153.
    Recent years have witnessed intensive efforts to specify which requirements ethical artificial intelligence (AI) must meet. General guidelines for ethical AI consider a varying number of principles important. A frequent novel element in these guidelines, that we have bundled together under the term explicability, aims to reduce the black-box character of machine learning algorithms. The centrality of this element invites reflection on the conceptual relation between explicability and the four bioethical principles. This is important because the application of general ethical (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • AI, big data, and the future of consent.Adam J. Andreotta, Nin Kirkham & Marco Rizzi - 2022 - AI and Society 37 (4):1715-1728.
    In this paper, we discuss several problems with current Big data practices which, we claim, seriously erode the role of informed consent as it pertains to the use of personal information. To illustrate these problems, we consider how the notion of informed consent has been understood and operationalised in the ethical regulation of biomedical research (and medical practices, more broadly) and compare this with current Big data practices. We do so by first discussing three types of problems that can impede (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Artificial intelligence and the value of transparency.Joel Walmsley - 2021 - AI and Society 36 (2):585-595.
    Some recent developments in Artificial Intelligence—especially the use of machine learning systems, trained on big data sets and deployed in socially significant and ethically weighty contexts—have led to a number of calls for “transparency”. This paper explores the epistemological and ethical dimensions of that concept, as well as surveying and taxonomising the variety of ways in which it has been invoked in recent discussions. Whilst “outward” forms of transparency may be straightforwardly achieved, what I call “functional” transparency about the inner (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Techno-optimism: an Analysis, an Evaluation and a Modest Defence.John Danaher - 2022 - Philosophy and Technology 35 (2):1-29.
    What is techno-optimism and how can it be defended? Although techno-optimist views are widely espoused and critiqued, there have been few attempts to systematically analyse what it means to be a techno-optimist and how one might defend this view. This paper attempts to address this oversight by providing a comprehensive analysis and evaluation of techno-optimism. It is argued that techno-optimism is a pluralistic stance that comes in weak and strong forms. These vary along a number of key dimensions but each (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • AI and the expert; a blueprint for the ethical use of opaque AI.Amber Ross - forthcoming - AI and Society:1-12.
    The increasing demand for transparency in AI has recently come under scrutiny. The question is often posted in terms of “epistemic double standards”, and whether the standards for transparency in AI ought to be higher than, or equivalent to, our standards for ordinary human reasoners. I agree that the push for increased transparency in AI deserves closer examination, and that comparing these standards to our standards of transparency for other opaque systems is an appropriate starting point. I suggest that a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Machine learning in bail decisions and judges’ trustworthiness.Alexis Morin-Martel - 2023 - AI and Society:1-12.
    The use of AI algorithms in criminal trials has been the subject of very lively ethical and legal debates recently. While there are concerns over the lack of accuracy and the harmful biases that certain algorithms display, new algorithms seem more promising and might lead to more accurate legal decisions. Algorithms seem especially relevant for bail decisions, because such decisions involve statistical data to which human reasoners struggle to give adequate weight. While getting the right legal outcome is a strong (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • AI, Explainability and Public Reason: The Argument from the Limitations of the Human Mind.Jocelyn Maclure - 2021 - Minds and Machines 31 (3):421-438.
    Machine learning-based AI algorithms lack transparency. In this article, I offer an interpretation of AI’s explainability problem and highlight its ethical saliency. I try to make the case for the legal enforcement of a strong explainability requirement: human organizations which decide to automate decision-making should be legally obliged to demonstrate the capacity to explain and justify the algorithmic decisions that have an impact on the wellbeing, rights, and opportunities of those affected by the decisions. This legal duty can be derived (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Beyond explainability: justifiability and contestability of algorithmic decision systems.Clément Henin & Daniel Le Métayer - 2022 - AI and Society 37 (4):1397-1410.
    In this paper, we point out that explainability is useful but not sufficient to ensure the legitimacy of algorithmic decision systems. We argue that the key requirements for high-stakes decision systems should be justifiability and contestability. We highlight the conceptual differences between explanations and justifications, provide dual definitions of justifications and contestations, and suggest different ways to operationalize justifiability and contestability.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms.Benedetta Giovanola & Simona Tiribelli - 2023 - AI and Society 38 (2):549-563.
    The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What does it mean to embed ethics in data science? An integrative approach based on the microethics and virtues.Louise Bezuidenhout & Emanuele Ratti - 2021 - AI and Society 36:939–953.
    In the past few years, scholars have been questioning whether the current approach in data ethics based on the higher level case studies and general principles is effective. In particular, some have been complaining that such an approach to ethics is difficult to be applied and to be taught in the context of data science. In response to these concerns, there have been discussions about how ethics should be “embedded” in the practice of data science, in the sense of showing (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • “Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocation.Jon Rueda, Janet Delgado Rodríguez, Iris Parra Jounou, Joaquín Hortal-Carmona, Txetxu Ausín & David Rodríguez-Arias - 2022 - AI and Society:1-12.
    The increasing application of artificial intelligence (AI) to healthcare raises both hope and ethical concerns. Some advanced machine learning methods provide accurate clinical predictions at the expense of a significant lack of explainability. Alex John London has defended that accuracy is a more important value than explainability in AI medicine. In this article, we locate the trade-off between accurate performance and explainable algorithms in the context of distributive justice. We acknowledge that accuracy is cardinal from outcome-oriented justice because it helps (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Ethical and Epistemological Utility of Explicable AI in Medicine.Christian Herzog - 2022 - Philosophy and Technology 35 (2):1-31.
    In this article, I will argue in favor of both the ethical and epistemological utility of explanations in artificial intelligence -based medical technology. I will build on the notion of “explicability” due to Floridi, which considers both the intelligibility and accountability of AI systems to be important for truly delivering AI-powered services that strengthen autonomy, beneficence, and fairness. I maintain that explicable algorithms do, in fact, strengthen these ethical principles in medicine, e.g., in terms of direct patient–physician contact, as well (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ethical and legal challenges of informed consent applying artificial intelligence in medical diagnostic consultations.Kristina Astromskė, Eimantas Peičius & Paulius Astromskis - 2021 - AI and Society 36 (2):509-520.
    This paper inquiries into the complex issue of informed consent applying artificial intelligence in medical diagnostic consultations. The aim is to expose the main ethical and legal concerns of the New Health phenomenon, powered by intelligent machines. To achieve this objective, the first part of the paper analyzes ethical aspects of the alleged right to explanation, privacy, and informed consent, applying artificial intelligence in medical diagnostic consultations. This analysis is followed by a legal analysis of the limits and requirements for (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Weapons of moral construction? On the value of fairness in algorithmic decision-making.Simona Tiribelli & Benedetta Giovanola - 2022 - Ethics and Information Technology 24 (1):1-13.
    Fairness is one of the most prominent values in the Ethics and Artificial Intelligence (AI) debate and, specifically, in the discussion on algorithmic decision-making (ADM). However, while the need for fairness in ADM is widely acknowledged, the very concept of fairness has not been sufficiently explored so far. Our paper aims to fill this gap and claims that an ethically informed re-definition of fairness is needed to adequately investigate fairness in ADM. To achieve our goal, after an introductory section aimed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Deception of Certainty: how Non-Interpretable Machine Learning Outcomes Challenge the Epistemic Authority of Physicians. A deliberative-relational Approach.Florian Funer - 2022 - Medicine, Health Care and Philosophy 25 (2):167-178.
    Developments in Machine Learning (ML) have attracted attention in a wide range of healthcare fields to improve medical practice and the benefit of patients. Particularly, this should be achieved by providing more or less automated decision recommendations to the treating physician. However, some hopes placed in ML for healthcare seem to be disappointed, at least in part, by a lack of transparency or traceability. Skepticism exists primarily in the fact that the physician, as the person responsible for diagnosis, therapy, and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Healthy Mistrust: Medical Black Box Algorithms, Epistemic Authority, and Preemptionism.Andreas Wolkenstein - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3):370-379.
    In the ethics of algorithms, a specifically epistemological analysis is rarely undertaken in order to gain a critique (or a defense) of the handling of or trust in medical black box algorithms (BBAs). This article aims to begin to fill this research gap. Specifically, the thesis is examined according to which such algorithms are regarded as epistemic authorities (EAs) and that the results of a medical algorithm must completely replace other convictions that patients have (preemptionism). If this were true, it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Technological Answerability and the Severance Problem: Staying Connected by Demanding Answers.Daniel W. Tigard - 2021 - Science and Engineering Ethics 27 (5):1-20.
    Artificial intelligence and robotic technologies have become nearly ubiquitous. In some ways, the developments have likely helped us, but in other ways sophisticated technologies set back our interests. Among the latter sort is what has been dubbed the ‘severance problem’—the idea that technologies sever our connection to the world, a connection which is necessary for us to flourish and live meaningful lives. I grant that the severance problem is a threat we should mitigate and I ask: how can we stave (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Accuracy and Interpretability: Struggling with the Epistemic Foundations of Machine Learning-Generated Medical Information and Their Practical Implications for the Doctor-Patient Relationship.Florian Funer - 2022 - Philosophy and Technology 35 (1):1-20.
    The initial successes in recent years in harnessing machine learning technologies to improve medical practice and benefit patients have attracted attention in a wide range of healthcare fields. Particularly, it should be achieved by providing automated decision recommendations to the treating clinician. Some hopes placed in such ML-based systems for healthcare, however, seem to be unwarranted, at least partially because of their inherent lack of transparency, although their results seem convincing in accuracy and reliability. Skepticism arises when the physician as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What is new with Artificial Intelligence? Human–agent interactions through the lens of social agency.Marine Pagliari, Valérian Chambon & Bruno Berberian - 2022 - Frontiers in Psychology 13.
    In this article, we suggest that the study of social interactions and the development of a “sense of agency” in joint action can help determine the content of relevant explanations to be implemented in artificial systems to make them “explainable.” The introduction of automated systems, and more broadly of Artificial Intelligence, into many domains has profoundly changed the nature of human activity, as well as the subjective experience that agents have of their own actions and their consequences – an experience (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Attitudinal Tensions in the Joint Pursuit of Explainable and Trusted AI.Devesh Narayanan & Zhi Ming Tan - 2023 - Minds and Machines 33 (1):55-82.
    It is frequently demanded that AI-based Decision Support Tools (AI-DSTs) ought to be both explainable to, and trusted by, those who use them. The joint pursuit of these two principles is ordinarily believed to be uncontroversial. In fact, a common view is that AI systems should be made explainable so that they can be trusted, and in turn, accepted by decision-makers. However, the moral scope of these two principles extends far beyond this particular instrumental connection. This paper argues that if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Technology as Terrorism: Police Control Technologies and Drone Warfare.Jessica Wolfendale - 2021 - In Scott Robbins, Alastair Reed, Seamus Miller & Adam Henschke (eds.), Counter-Terrorism, Ethics, and Technology: Emerging Challenges At The Frontiers Of Counter-Terrorism,. Springer. pp. 1-21.
    Debates about terrorism and technology often focus on the potential uses of technology by non-state terrorist actors and by states as forms of counterterrorism. Yet, little has been written about how technology shapes how we think about terrorism. In this chapter I argue that technology, and the language we use to talk about technology, constrains and shapes our understanding of the nature, scope, and impact of terrorism, particularly in relation to state terrorism. After exploring the ways in which technology shapes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Legitimacy and automated decisions: the moral limits of algocracy.Bartek Chomanski - 2022 - Ethics and Information Technology 24 (3):1-9.
    With the advent of automated decision-making, governments have increasingly begun to rely on artificially intelligent algorithms to inform policy decisions across a range of domains of government interest and influence. The practice has not gone unnoticed among philosophers, worried about “algocracy”, and its ethical and political impacts. One of the chief issues of ethical and political significance raised by algocratic governance, so the argument goes, is the lack of transparency of algorithms. One of the best-known examples of philosophical analyses of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sources of Understanding in Supervised Machine Learning Models.Paulo Pirozelli - 2022 - Philosophy and Technology 35 (2):1-19.
    In the last decades, supervised machine learning has seen the widespread growth of highly complex, non-interpretable models, of which deep neural networks are the most typical representative. Due to their complexity, these models have showed an outstanding performance in a series of tasks, as in image recognition and machine translation. Recently, though, there has been an important discussion over whether those non-interpretable models are able to provide any sort of understanding whatsoever. For some scholars, only interpretable models can provide understanding. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algorithms and dehumanization: a definition and avoidance model.Mario D. Schultz, Melanie Clegg, Reto Hofstetter & Peter Seele - forthcoming - AI and Society:1-21.
    Dehumanization by algorithms raises important issues for business and society. Yet, these issues remain poorly understood due to the fragmented nature of the evolving dehumanization literature across disciplines, originating from colonialism, industrialization, post-colonialism studies, contemporary ethics, and technology studies. This article systematically reviews the literature on algorithms and dehumanization (n = 180 articles) and maps existing knowledge across several clusters that reveal its underlying characteristics. Based on the review, we find that algorithmic dehumanization is particularly problematic for human resource management (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Future of Value Sensitive Design.Batya Friedman, David Hendry, Steven Umbrello, Jeroen Van Den Hoven & Daisy Yoo - 2020 - Paradigm Shifts in ICT Ethics: Proceedings of the 18th International Conference ETHICOMP 2020.
    In this panel, we explore the future of value sensitive design (VSD). The stakes are high. Many in public and private sectors and in civil society are gradually realizing that taking our values seriously implies that we have to ensure that values effectively inform the design of technology which, in turn, shapes people’s lives. Value sensitive design offers a highly developed set of theory, tools, and methods to systematically do so.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mapping the landscape of ethical considerations in explainable AI research.Luca Nannini, Marta Marchiori Manerba & Isacco Beretta - 2024 - Ethics and Information Technology 26 (3):1-22.
    With its potential to contribute to the ethical governance of AI, eXplainable AI (XAI) research frequently asserts its relevance to ethical considerations. Yet, the substantiation of these claims with rigorous ethical analysis and reflection remains largely unexamined. This contribution endeavors to scrutinize the relationship between XAI and ethical considerations. By systematically reviewing research papers mentioning ethical terms in XAI frameworks and tools, we investigate the extent and depth of ethical discussions in scholarly research. We observe a limited and often superficial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Take five? A coherentist argument why medical AI does not require a new ethical principle.Seppe Segers & Michiel De Proost - 2024 - Theoretical Medicine and Bioethics 45 (5):387-400.
    With the growing application of machine learning models in medicine, principlist bioethics has been put forward as needing revision. This paper reflects on the dominant trope in AI ethics to include a new ‘principle of explicability’ alongside the traditional four principles of bioethics that make up the theory of principlism. It specifically suggests that these four principles are sufficient and challenges the relevance of explicability as a separate ethical principle by emphasizing the coherentist affinity of principlism. We argue that, through (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exploring explainable AI in the tax domain.Łukasz Górski, Błażej Kuźniacki, Marco Almada, Kamil Tyliński, Madalena Calvo, Pablo Matias Asnaghi, Luciano Almada, Hilario Iñiguez, Fernando Rubianes, Octavio Pera & Juan Ignacio Nigrelli - forthcoming - Artificial Intelligence and Law:1-29.
    This paper analyses whether current explainable AI (XAI) techniques can help to address taxpayer concerns about the use of AI in taxation. As tax authorities around the world increase their use of AI-based techniques, taxpayers are increasingly at a loss about whether and how the ensuing decisions follow the procedures required by law and respect their substantive rights. The use of XAI has been proposed as a response to this issue, but it is still an open question whether current XAI (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cyberethics in nursing education: Ethical implications of artificial intelligence.Jennie C. De Gagne, Hyeyoung Hwang & Dukyoo Jung - forthcoming - Nursing Ethics.
    As the use of artificial intelligence (AI) technologies, particularly generative AI (Gen AI), becomes increasingly prevalent in nursing education, it is paramount to address the ethical implications of their implementation. This article explores the realm of cyberethics (a field of applied ethics that focuses on the ethical, legal, and social implications of cybertechnology), highlighting the ethical principles of autonomy, nonmaleficence, beneficence, justice, and explicability as a roadmap for facilitating AI integration into nursing education. Research findings suggest that ethical dilemmas that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nullius in Explanans: an ethical risk assessment for explainable AI.Luca Nannini, Diletta Huyskes, Enrico Panai, Giada Pistilli & Alessio Tartaro - 2025 - Ethics and Information Technology 27 (1):1-28.
    Explanations are conceived to ensure the trustworthiness of AI systems. Yet, relying solemnly on algorithmic solutions, as provided by explainable artificial intelligence (XAI), might fall short to account for sociotechnical risks jeopardizing their factuality and informativeness. To mitigate these risks, we delve into the complex landscape of ethical risks surrounding XAI systems and their generated explanations. By employing a literature review combined with rigorous thematic analysis, we uncover a diverse array of technical risks tied to the robustness, fairness, and evaluation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • AI employment decision-making: integrating the equal opportunity merit principle and explainable AI.Gary K. Y. Chan - forthcoming - AI and Society:1-12.
    Artificial intelligence tools used in employment decision-making cut across the multiple stages of job advertisements, shortlisting, interviews and hiring, and actual and potential bias can arise in each of these stages. One major challenge is to mitigate AI bias and promote fairness in opaque AI systems. This paper argues that the equal opportunity merit principle is an ethical approach for fair AI employment decision-making. Further, explainable AI can mitigate the opacity problem by placing greater emphasis on enhancing the understanding of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: Digital Technologies and Human Decision-Making.Sofia Bonicalzi, Mario De Caro & Benedetta Giovanola - 2023 - Topoi 42 (3):793-797.
    Download  
     
    Export citation  
     
    Bookmark  
  • Risk and Responsibility in Context.Adriana Placani & Stearns Broadhead (eds.) - 2023 - New York: Routledge.
    This volume bridges contemporary philosophical conceptions of risk and responsibility and offers an extensive examination of the topic. It shows that risk and responsibility combine in ways that give rise to new philosophical questions and problems. Philosophical interest in the relationship between risk and responsibility continues to rise, due in no small part due to environmental crises, emerging technologies, legal developments, and new medical advances. Despite such interest, scholars are just now working out how to conceive of the links between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inteligencia artificial sostenible y evaluación ética constructiva.Antonio Luis Terrones Rodríguez - 2022 - Isegoría 67:10-10.
    El aumento considerable de la capacidad de la inteligencia artificial (IA) implica un alto consumo de recursos energéticos. La situación ambiental actual, caracterizada por la acuciante degradación de ecosistemas y la ruptura del equilibrio, exige tomar medidas en diversos ámbitos. La IA no puede quedar al margen, y aunque es empleada para objetivos de sostenibilidad, debe plantearse como sostenible en términos integrales. La propuesta de una inteligencia artificial sostenible se argumenta a partir de una evaluación ética constructiva, donde la inclusión (...)
    Download  
     
    Export citation  
     
    Bookmark