Switch to: References

Citations of:

Model systems in stem cell biology

Bioessays 26 (9):1005-1012 (2004)

Add citations

You must login to add citations.
  1. Generative models: Human embryonic stem cells and multiple modeling relations.Melinda Bonnie Fagan - 2016 - Studies in History and Philosophy of Science Part A 56:122-134.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Entangled Life: Organism and Environment in the Biological and Social Sciences.Gillian Barker, Eric Desjardins & Trevor Pearce (eds.) - 2014 - Dordrecht: Springer.
    Despite the burgeoning interest in new and more complex accounts of the organism-environment dyad by biologists and philosophers, little attention has been paid in the resulting discussions to the history of these ideas and to their deployment in disciplines outside biology—especially in the social sciences. Even in biology and philosophy, there is a lack of detailed conceptual models of the organism-environment relationship. This volume is designed to fill these lacunae by providing the first multidisciplinary discussion of the topic of organism-environment (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Boundaries of Development.Thomas Pradeu, Lucie Laplane, Michel Morange, Antonine Nicoglou & Michel Vervoort - 2011 - Biological Theory 6 (1):1 - 3.
    This special issue of Biological Theory is focused on development; it raises the problem of the temporal and spatial boundaries of development. From a temporal point of view, when does development start and stop? From a spatial point of view, what is it exactly that "develops", and is it possible to delineate clearly the developing entity? This issue explores the possible answers to these questions, and thus sheds light on the definition of development itself.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • When Traditional Essentialism Fails: Biological Natural Kinds.Robert A. Wilson, Matthew J. Barker & Ingo Brigandt - 2007 - Philosophical Topics 35 (1-2):189-215.
    Essentialism is widely regarded as a mistaken view of biological kinds, such as species. After recounting why (sections 2-3), we provide a brief survey of the chief responses to the “death of essentialism” in the philosophy of biology (section 4). We then develop one of these responses, the claim that biological kinds are homeostatic property clusters (sections 5-6) illustrating this view with several novel examples (section 7). Although this view was first expressed 20 years ago, and has received recent discussion (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Philosophy of Stem Cell Biology – an Introduction.Melinda Bonnie Fagan - 2013 - Philosophy Compass 8 (12):1147-1158.
    This review surveys three central issues in philosophy of stem cell biology: the nature of stem cells, stem cell experiments, and explanations of stem cell capacities. First, I argue that the fundamental question ‘what is a stem cell?’ has no single substantive answer. Instead, the core idea is explicated via an abstract model, which accounts for many features of stem cell experiments. The second part of this essay examines several of these features: uncertainty, model organisms, and manipulability. The results shed (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Chimeras.Constanze Huther - unknown
    What types of human-animal interspecific entities are used in biomedical research? Is creating such entities morally wrong? And what do interspecifics tell us about the moral significance of species? This thesis offers an introduction to the field of human-animal interspecifics from a bioethical perspective, with a special focus on the question of speciesism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hidden Entities and Experimental Practice: Renewing the Dialogue Between History and Philosophy of Science.Theodore Arabatzis - 2011 - Boston Studies in the Philosophy of Science 263:125-139.
    In this chapter I investigate the prospects of integrated history and philosophy of science, by examining how philosophical issues raised by “hidden entities”, entities that are not accessible to unmediated observation, can enrich the historical investigation of their careers. Conversely, I suggest that the history of those entities has important lessons to teach to the philosophy of science. Hidden entities have played a crucial role in the development of the natural sciences. Despite their centrality to past scientific practice, however, several (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Part-human chimeras: Worrying the facts, probing the ethics.Françoise Baylis & Jason Scott Robert - 2007 - American Journal of Bioethics 7 (5):41 – 45.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The comparative biology of human nature.Jason Scott Robert - 2008 - Philosophical Psychology 21 (3):425 – 436.
    Model organismism—the over-reliance on model organisms without sufficient attention to the adequacy of the models—continues to hobble our understanding of human brains and behaviors. I outline the problem of model organismism in contemporary biology and biomedicine, and discuss the virtues of a genuinely comparative biology for understanding ourselves, our evolutionary history, and our place in nature.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is risky pediatric research without prospect of direct benefit ever justified?Rebecca A. Martin & Jason Scott Robert - 2007 - American Journal of Bioethics 7 (3):12 – 15.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Regeneration: Thomas Hunt Morgan’s Window into Development.Mary Evelyn Sunderland - 2010 - Journal of the History of Biology 43 (2):325-361.
    Early in his career Thomas Hunt Morgan was interested in embryology and dedicated his research to studying organisms that could regenerate. Widely regarded as a regeneration expert, Morgan was invited to deliver a series of lectures on the topic that he developed into a book, Regeneration. In addition to presenting experimental work that he had conducted and supervised, Morgan also synthesized and critiqued a great deal of work by his peers and predecessors. This essay probes into the history of regeneration (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (Re)defining stem cells.Stanley Shostak - 2006 - Bioessays 28 (3):301-308.
    Stem-cell nomenclature is in a muddle! So-called stem cells may be self-renewing or emergent, oligopotent (uni- and multipotent) or pluri- and totipotent, cells with perpetual embryonic features or cells that have changed irreversibly. Ambiguity probably seeped into stem cells from common usage, flukes in biology's history beginning with Weismann's divide between germ and soma and Haeckel's biogenic law and ending with contemporary issues over the therapeutic efficacy of adult versus embryonic cells. Confusion centers on tissue dynamics, whether stem cells are (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Systems bioethics and stem cell biology.Jason Scott Robert, Jane Maienschein & Manfred D. Laubichler - 2006 - Journal of Bioethical Inquiry 3 (1-2):19-31.
    The complexities of modern science are not adequately reflected in many bioethical discussions. This is especially problematic in highly contested cases where there is significant pressure to generate clinical applications fast, as in stem cell research. In those cases a more integrated approach to bioethics, which we call systems bioethics, can provide a useful framework to address ethical and policy issues. Much as systems biology brings together different experimental and methodological approaches in an integrative way, systems bioethics integrates aspects of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations