Switch to: References

Add citations

You must login to add citations.
  1. On Schnorr and computable randomness, martingales, and machines.Rod Downey, Evan Griffiths & Geoffrey Laforte - 2004 - Mathematical Logic Quarterly 50 (6):613-627.
    We examine the randomness and triviality of reals using notions arising from martingales and prefix-free machines.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relativized Schnorr tests with universal behavior.Nicholas Rupprecht - 2010 - Archive for Mathematical Logic 49 (5):555-570.
    A Schnorr test relative to some oracle A may informally be called “universal” if it covers all Schnorr tests. Since no true universal Schnorr test exists, such an A cannot be computable. We prove that the sets with this property are exactly those with high Turing degree. Our method is closely related to the proof of Terwijn and Zambella’s characterization of the oracles which are low for Schnorr tests. We also consider the oracles which compute relativized Schnorr tests with the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Anti-Complex Sets and Reducibilities with Tiny Use.Johanna N. Y. Franklin, Noam Greenberg, Frank Stephan & Guohua Wu - 2013 - Journal of Symbolic Logic 78 (4):1307-1327.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Randomness and lowness notions via open covers.Laurent Bienvenu & Joseph S. Miller - 2012 - Annals of Pure and Applied Logic 163 (5):506-518.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Subclasses of the Weakly Random Reals.Johanna N. Y. Franklin - 2010 - Notre Dame Journal of Formal Logic 51 (4):417-426.
    The weakly random reals contain not only the Schnorr random reals as a subclass but also the weakly 1-generic reals and therefore the n -generic reals for every n . While the class of Schnorr random reals does not overlap with any of these classes of generic reals, their degrees may. In this paper, we describe the extent to which this is possible for the Turing, weak truth-table, and truth-table degrees and then extend our analysis to the Schnorr random and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Equivalence of Definitions of Algorithmic Randomness.Christopher Porter - 2021 - Philosophia Mathematica 29 (2):153–194.
    In this paper, I evaluate the claim that the equivalence of multiple intensionally distinct definitions of random sequence provides evidence for the claim that these definitions capture the intuitive conception of randomness, concluding that the former claim is false. I then develop an alternative account of the significance of randomness-theoretic equivalence results, arguing that they are instances of a phenomenon I refer to as schematic equivalence. On my account, this alternative approach has the virtue of providing the plurality of definitions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Schnorr trivial reals: a construction. [REVIEW]Johanna N. Y. Franklin - 2008 - Archive for Mathematical Logic 46 (7-8):665-678.
    A real is Martin-Löf (Schnorr) random if it does not belong to any effectively presented null ${\Sigma^0_1}$ (recursive) class of reals. Although these randomness notions are very closely related, the set of Turing degrees containing reals that are K-trivial has very different properties from the set of Turing degrees that are Schnorr trivial. Nies proved in (Adv Math 197(1):274–305, 2005) that all K-trivial reals are low. In this paper, we prove that if ${{\bf h'} \geq_T {\bf 0''}}$ , then h (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Constructive equivalence relations on computable probability measures.Laurent Bienvenu & Wolfgang Merkle - 2009 - Annals of Pure and Applied Logic 160 (3):238-254.
    A central object of study in the field of algorithmic randomness are notions of randomness for sequences, i.e., infinite sequences of zeros and ones. These notions are usually defined with respect to the uniform measure on the set of all sequences, but extend canonically to other computable probability measures. This way each notion of randomness induces an equivalence relation on the computable probability measures where two measures are equivalent if they have the same set of random sequences. In what follows, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Truth-table Schnorr randomness and truth-table reducible randomness.Kenshi Miyabe - 2011 - Mathematical Logic Quarterly 57 (3):323-338.
    Schnorr randomness and computable randomness are natural concepts of random sequences. However van Lambalgen’s Theorem fails for both randomnesses. In this paper we define truth-table Schnorr randomness and truth-table reducible randomness, for which we prove that van Lambalgen's Theorem holds. We also show that the classes of truth-table Schnorr random reals relative to a high set contain reals Turing equivalent to the high set. It follows that each high Schnorr random real is half of a real for which van Lambalgen's (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations