Switch to: References

Add citations

You must login to add citations.
  1. Canonical Rules.Emil Jeřábek - 2009 - Journal of Symbolic Logic 74 (4):1171 - 1205.
    We develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Realisability for infinitary intuitionistic set theory.Merlin Carl, Lorenzo Galeotti & Robert Passmann - 2023 - Annals of Pure and Applied Logic 174 (6):103259.
    Download  
     
    Export citation  
     
    Bookmark  
  • The first-order logic of CZF is intuitionistic first-order logic.Robert Passmann - 2024 - Journal of Symbolic Logic 89 (1):308-330.
    We prove that the first-order logic of CZF is intuitionistic first-order logic. To do so, we introduce a new model of transfinite computation (Set Register Machines) and combine the resulting notion of realisability with Beth semantics. On the way, we also show that the propositional admissible rules of CZF are exactly those of intuitionistic propositional logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Preservation of admissible rules when combining logics.João Rasga, Cristina Sernadas & Amílcar Sernadas - 2016 - Review of Symbolic Logic 9 (4):641-663.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Unification in intermediate logics.Rosalie Iemhoff & Paul Rozière - 2015 - Journal of Symbolic Logic 80 (3):713-729.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Syntactic Approach to Unification in Transitive Reflexive Modal Logics.Rosalie Iemhoff - 2016 - Notre Dame Journal of Formal Logic 57 (2):233-247.
    This paper contains a proof-theoretic account of unification in transitive reflexive modal logics, which means that the reasoning is syntactic and uses as little semantics as possible. New proofs of theorems on unification types are presented and these results are extended to negationless fragments. In particular, a syntactic proof of Ghilardi’s result that $\mathsf {S4}$ has finitary unification is provided. In this approach the relation between classical valuations, projective unifiers, and admissible rules is clarified.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Consequence Relations and Admissible Rules.Rosalie Iemhoff - 2016 - Journal of Philosophical Logic 45 (3):327-348.
    This paper contains a detailed account of the notion of admissibility in the setting of consequence relations. It is proved that the two notions of admissibility used in the literature coincide, and it provides an extension to multi–conclusion consequence relations that is more general than the one usually encountered in the literature on admissibility. The notion of a rule scheme is introduced to capture rules with side conditions, and it is shown that what is generally understood under the extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Rules.Rosalie Iemhoff - 2015 - Journal of Philosophical Logic 44 (6):697-711.
    This paper contains a brief overview of the area of admissible rules with an emphasis on results about intermediate and modal propositional logics. No proofs are given but many references to the literature are provided.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Admissibility and refutation: some characterisations of intermediate logics.Jeroen P. Goudsmit - 2014 - Archive for Mathematical Logic 53 (7-8):779-808.
    Refutation systems are formal systems for inferring the falsity of formulae. These systems can, in particular, be used to syntactically characterise logics. In this paper, we explore the close connection between refutation systems and admissible rules. We develop technical machinery to construct refutation systems, employing techniques from the study of admissible rules. Concretely, we provide a refutation system for the intermediate logics of bounded branching, known as the Gabbay–de Jongh logics. We show that this gives a characterisation of these logics (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Independent bases of admissible rules.Emil Jerábek - 2008 - Logic Journal of the IGPL 16 (3):249-267.
    We show that IPC, K4, GL, and S4, as well as all logics inheriting their admissible rules, have independent bases of admissible rules.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Complexity of admissible rules.Emil Jeřábek - 2007 - Archive for Mathematical Logic 46 (2):73-92.
    We investigate the computational complexity of deciding whether a given inference rule is admissible for some modal and superintuitionistic logics. We state a broad condition under which the admissibility problem is coNEXP-hard. We also show that admissibility in several well-known systems (including GL, S4, and IPC) is in coNE, thus obtaining a sharp complexity estimate for admissibility in these systems.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A note on admissible rules and the disjunction property in intermediate logics.Alexander Citkin - 2012 - Archive for Mathematical Logic 51 (1):1-14.
    With any structural inference rule A/B, we associate the rule $${(A \lor p)/(B \lor p)}$$, providing that formulas A and B do not contain the variable p. We call the latter rule a join-extension ( $${\lor}$$ -extension, for short) of the former. Obviously, for any intermediate logic with disjunction property, a $${\lor}$$ -extension of any admissible rule is also admissible in this logic. We investigate intermediate logics, in which the $${\lor}$$ -extension of each admissible rule is admissible. We prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Decidability of admissibility: On a problem by Friedman and its solution by Rybakov.Jeroen P. Goudsmit - 2021 - Bulletin of Symbolic Logic 27 (1):1-38.
    Rybakov proved that the admissible rules of $\mathsf {IPC}$ are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidability of Admissibility: On a Problem by Friedman and its Solution by Rybakov.Jeroen P. Goudsmit - 2021 - Bulletin of Symbolic Logic 27 (1):1-38.
    Rybakov (1984a) proved that the admissible rules of IPC are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Admissible Rules of ${{mathsf{BD}_{2}}}$ and ${mathsf{GSc}}$.Jeroen P. Goudsmit - 2018 - Notre Dame Journal of Formal Logic 59 (3):325-353.
    The Visser rules form a basis of admissibility for the intuitionistic propositional calculus. We show how one can characterize the existence of covers in certain models by means of formulae. Through this characterization, we provide a new proof of the admissibility of a weak form of the Visser rules. Finally, we use this observation, coupled with a description of a generalization of the disjunction property, to provide a basis of admissibility for the intermediate logics BD2 and GSc.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On unification and admissible rules in Gabbay–de Jongh logics.Jeroen P. Goudsmit & Rosalie Iemhoff - 2014 - Annals of Pure and Applied Logic 165 (2):652-672.
    In this paper we study the admissible rules of intermediate logics. We establish some general results on extensions of models and sets of formulas. These general results are then employed to provide a basis for the admissible rules of the Gabbay–de Jongh logics and to show that these logics have finitary unification type.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proof theory for admissible rules.Rosalie Iemhoff & George Metcalfe - 2009 - Annals of Pure and Applied Logic 159 (1-2):171-186.
    Admissible rules of a logic are those rules under which the set of theorems of the logic is closed. In this paper, a Gentzen-style framework is introduced for analytic proof systems that derive admissible rules of non-classical logics. While Gentzen systems for derivability treat sequents as basic objects, for admissibility, the basic objects are sequent rules. Proof systems are defined here for admissible rules of classes of modal logics, including K4, S4, and GL, and also Intuitionistic Logic IPC. With minor (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Basic Intuitionistic Logic of Proofs.Sergei Artemov & Rosalie Iemhoff - 2007 - Journal of Symbolic Logic 72 (2):439 - 451.
    The language of the basic logic of proofs extends the usual propositional language by forming sentences of the sort x is a proof of F for any sentence F. In this paper a complete axiomatization for the basic logic of proofs in Heyting Arithmetic HA was found.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hereditarily Structurally Complete Superintuitionistic Deductive Systems.Alex Citkin - 2018 - Studia Logica 106 (4):827-856.
    Propositional logic is understood as a set of theorems defined by a deductive system: a set of axioms and a set of rules. Superintuitionistic logic is a logic extending intuitionistic propositional logic \. A rule is admissible for a logic if any substitution that makes each premise a theorem, makes the conclusion a theorem too. A deductive system \ is structurally complete if any rule admissible for the logic defined by \ is derivable in \. It is known that any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hereditarily Structurally Complete Intermediate Logics: Citkin’s Theorem Via Duality.Nick Bezhanishvili & Tommaso Moraschini - 2023 - Studia Logica 111 (2):147-186.
    A deductive system is said to be structurally complete if its admissible rules are derivable. In addition, it is called hereditarily structurally complete if all its extensions are structurally complete. Citkin (1978) proved that an intermediate logic is hereditarily structurally complete if and only if the variety of Heyting algebras associated with it omits five finite algebras. Despite its importance in the theory of admissible rules, a direct proof of Citkin’s theorem is not widely accessible. In this paper we offer (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finite Frames Fail: How Infinity Works Its Way into the Semantics of Admissibility.Jeroen P. Goudsmit - 2016 - Studia Logica 104 (6):1191-1204.
    Many intermediate logics, even extremely well-behaved ones such as IPC, lack the finite model property for admissible rules. We give conditions under which this failure holds. We show that frames which validate all admissible rules necessarily satisfy a certain closure condition, and we prove that this condition, in the finite case, ensures that the frame is of width 2. Finally, we indicate how this result is related to some classical results on finite, free Heyting algebras.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Universal proof theory: Feasible admissibility in intuitionistic modal logics.Amirhossein Akbar Tabatabai & Raheleh Jalali - 2025 - Annals of Pure and Applied Logic 176 (2):103526.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the rules of intermediate logics.Rosalie Iemhoff - 2006 - Archive for Mathematical Logic 45 (5):581-599.
    If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Constructive Validity of a Generalized Kreisel–Putnam Rule.Ivo Pezlar - forthcoming - Studia Logica.
    In this paper, we propose a computational interpretation of the generalized Kreisel–Putnam rule, also known as the generalized Harrop rule or simply the Split rule, in the style of BHK semantics. We will achieve this by exploiting the Curry–Howard correspondence between formulas and types. First, we inspect the inferential behavior of the Split rule in the setting of a natural deduction system for intuitionistic propositional logic. This will guide our process of formulating an appropriate program that would capture the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Admissible rules in the implication–negation fragment of intuitionistic logic.Petr Cintula & George Metcalfe - 2010 - Annals of Pure and Applied Logic 162 (2):162-171.
    Uniform infinite bases are defined for the single-conclusion and multiple-conclusion admissible rules of the implication–negation fragments of intuitionistic logic and its consistent axiomatic extensions . A Kripke semantics characterization is given for the structurally complete implication–negation fragments of intermediate logics, and it is shown that the admissible rules of this fragment of form a PSPACE-complete set and have no finite basis.
    Download  
     
    Export citation  
     
    Bookmark   24 citations