Switch to: References

Add citations

You must login to add citations.
  1. Emergence, Computation and the Freedom Degree Loss Information Principle in Complex Systems.Ignazio Licata & Gianfranco Minati - 2017 - Foundations of Science 22 (4):863-881.
    We consider processes of emergence within the conceptual framework of the Information Loss principle and the concepts of systems conserving information; systems compressing information; and systems amplifying information. We deal with the supposed incompatibility between emergence and computability tout-court. We distinguish between computational emergence, when computation acquires properties, and emergent computation, when computation emerges as a property. The focus is on emergence processes occurring within computational processes. Violations of Turing-computability such as non-explicitness and incompleteness are intended to represent partially the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classification of emergence and its relation to self‐organization.Julianne D. Halley & David A. Winkler - 2008 - Complexity 13 (5):10-15.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Cohomological emergence of sense in discourses.René Guitart - 2009 - Axiomathes 19 (3):245-270.
    As a significant extension of our previous calculus of logical differentials and moving logic, we propose here a mathematical diagram for specifying the emergence of novelty, through the construction of some “differentials” related to cohomological computations. Later we intend to examine how to use these “differentials” in the analysis of anticipation or evolution schemes. This proposal is given as a consequence of our comments on the Ehresmann–Vanbremeersch’s work on memory evolutive systems, from the two points of view which are characterization (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Calculating entropy at different scales among diverse communication systems.Gerardo Febres & Klaus Jaffé - 2016 - Complexity 21 (S1):330-353.
    Download  
     
    Export citation  
     
    Bookmark  
  • Visions of evolution: self-organization proposes what natural selection disposes.David Batten, Stanley Salthe & Fabio Boschetti - 2008 - Biological Theory 3 (1):17-29.
    This article reviews the seven “visions” of evolution proposed by Depew and Weber , concluding that each posited relationship between natural selection and self-organization has suited different aims and approaches. In the second section of the article, we show that these seven viewpoints may be collapsed into three fundamentally different ones: natural selection drives evolution; self-organization drives evolution; and natural selection and self-organization are complementary aspects of the evolutionary process. We then argue that these three approaches are not mutually exclusive, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A synthesis and a practical approach to complex systems.Nicolas Brodu - 2009 - Complexity 15 (1):36-60.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Causality, emergence, computation and unreasonable expectations.Fabio Boschetti - 2012 - Synthese 185 (2):187-194.
    I argue that much of current concern with the role of causality and strong emergence in natural processes is based upon an unreasonable expectation placed on our ability to formalize scientific knowledge. In most disciplines our formalization ability is an expectation rather than a scientific result. This calls for an empirical approach to the study of causation and emergence. Finally, I suggest that for advances in complexity research to occur, attention needs to be paid to understanding what role computation plays (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Causality, emergence, computation and unreasonable expectations.Fabio Boschetti - 2011 - Synthese 181 (3):405-412.
    I argue that much of current concern with the role of causality and strong emergence in natural processes is based upon an unreasonable expectation placed on our ability to formalize scientific knowledge. In most disciplines our formalization ability is an expectation rather than a scientific result. This calls for an empirical approach to the study of causation and emergence. Finally, I suggest that for advances in complexity research to occur, attention needs to be paid to understanding what role computation plays (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Autonomous Systems and the Place of Biology Among Sciences. Perspectives for an Epistemology of Complex Systems.Leonardo Bich - 2021 - In Gianfranco Minati (ed.), Multiplicity and Interdisciplinarity. Essays in Honor of Eliano Pessa. Springer. pp. 41-57.
    This paper discusses the epistemic status of biology from the standpoint of the systemic approach to living systems based on the notion of biological autonomy. This approach aims to provide an understanding of the distinctive character of biological systems and this paper analyses its theoretical and epistemological dimensions. The paper argues that, considered from this perspective, biological systems are examples of emergent phenomena, that the biological domain exhibits special features with respect to other domains, and that biology as a discipline (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Self-Organization, Emergence, and Constraint in Complex Natural Systems.Jon Lawhead - manuscript
    Contemporary complexity theory has been instrumental in providing novel rigorous definitions for some classic philosophical concepts, including emergence. In an attempt to provide an account of emergence that is consistent with complexity and dynamical systems theory, several authors have turned to the notion of constraints on state transitions. Drawing on complexity theory directly, this paper builds on those accounts, further developing the constraint-based interpretation of emergence and arguing that such accounts recover many of the features of more traditional accounts. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reentrant emergence.Dr Steven Ravett Brown - 2009 - Cogprints.
    Emergent properties (EPs) are not causally reducible to the properties of a complex system’s elements. If a system’s properties cannot be reduced to those of any of its components, then that system is effectively a singular entity (SE). EPs are thus not properties of known complexes, but of SEs. A precise description of the parameters necessary to observe a physical system as an SE is thus necessary to establish under what conditions properties are understood as emergent. That description is provided (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Seeing by Models: Vision as Adaptative Epistemology.Ignazio Licata - 2012 - In G. MInati (ed.), Methods, Models, Simulations and Approaches Towards a General Theory of Change. World Scientific.
    In this paper we suggest a clarification in relation to the notions of computational and intrinsic emergence, by showing how the latter is deeply connected to the new Logical Openness Theory, an original extension of Gödel theorems to the model theory. The epistemological scenario we are going to make use of is that of the theory of vision, a particularly instructive one. In order to reach our goal we introduce a dynamic theory of relationship between the observer and the observed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation