Switch to: References

Add citations

You must login to add citations.
  1. Herbrand analyses.Wilfried Sieg - 1991 - Archive for Mathematical Logic 30 (5-6):409-441.
    Herbrand's Theorem, in the form of $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\exists } $$ -inversion lemmata for finitary and infinitary sequent calculi, is the crucial tool for the determination of the provably total function(al)s of a variety of theories. The theories are (second order extensions of) fragments of classical arithmetic; the classes of provably total functions include the elements of the Polynomial Hierarchy, the Grzegorczyk Hierarchy, and the extended Grzegorczyk Hierarchy $\mathfrak{E}^\alpha $ , α < ε0. A subsidiary aim of the paper is to show (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The realm of primitive recursion.Harold Simmons - 1988 - Archive for Mathematical Logic 27 (2):177-188.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Proof lengths for instances of the Paris–Harrington principle.Anton Freund - 2017 - Annals of Pure and Applied Logic 168 (7):1361-1382.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How to characterize provably total functions by local predicativity.Andreas Weiermann - 1996 - Journal of Symbolic Logic 61 (1):52-69.
    Inspired by Pohlers' proof-theoretic analysis of KPω we give a straightforward non-metamathematical proof of the (well-known) classification of the provably total functions of $PA, PA + TI(\prec\lceil)$ (where it is assumed that the well-ordering $\prec$ has some reasonable closure properties) and KPω. Our method relies on a new approach to subrecursion due to Buchholz, Cichon and the author.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Slow reflection.Anton Freund - 2017 - Annals of Pure and Applied Logic 168 (12):2103-2128.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy.S. S. Wainer - 1972 - Journal of Symbolic Logic 37 (2):281-292.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On definition trees of ordinal recursive functonals: Reduction of the recursion orders by means of type level raising.Jan Terlouw - 1982 - Journal of Symbolic Logic 47 (2):395-402.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Slow versus fast growing.Andreas Weiermann - 2002 - Synthese 133 (1-2):13 - 29.
    We survey a selection of results about majorization hierarchies. The main focus is on classical and recent results about the comparison between the slow and fast growing hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classifying the phase transition threshold for Ackermannian functions.Eran Omri & Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 158 (3):156-162.
    It is well known that the Ackermann function can be defined via diagonalization from an iteration hierarchy which is built on a start function like the successor function. In this paper we study for a given start function g iteration hierarchies with a sub-linear modulus h of iteration. In terms of g and h we classify the phase transition for the resulting diagonal function from being primitive recursive to being Ackermannian.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations