Switch to: References

Citations of:

Herbrand analyses

Archive for Mathematical Logic 30 (5-6):409-441 (1991)

Add citations

You must login to add citations.
  1. Remarks on Herbrand normal forms and Herbrand realizations.Ulrich Kohlenbach - 1992 - Archive for Mathematical Logic 31 (5):305-317.
    LetA H be the Herbrand normal form ofA andA H,D a Herbrand realization ofA H. We showThere is an example of an (open) theory ℐ+ with function parameters such that for someA not containing function parameters Similar for first order theories ℐ+ if the index functions used in definingA H are permitted to occur in instances of non-logical axiom schemata of ℐ, i.e. for suitable ℐ,A In fact, in (1) we can take for ℐ+ the fragment (Σ 1 0 -IA)+ (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Term rewriting theory for the primitive recursive functions.E. A. Cichon & Andreas Weiermann - 1997 - Annals of Pure and Applied Logic 83 (3):199-223.
    The termination of rewrite systems for parameter recursion, simple nested recursion and unnested multiple recursion is shown by using monotone interpretations both on the ordinals below the first primitive recursively closed ordinal and on the natural numbers. We show that the resulting derivation lengths are primitive recursive. As a corollary we obtain transparent and illuminating proofs of the facts that the schemata of parameter recursion, simple nested recursion and unnested multiple recursion lead from primitive recursive functions to primitive recursive functions.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A note on the proof theory the λII-calculus.David J. Pym - 1995 - Studia Logica 54 (2):199 - 230.
    The lambdaPi-calculus, a theory of first-order dependent function types in Curry-Howard-de Bruijn correspondence with a fragment of minimal first-order logic, is defined as a system of (linearized) natural deduction. In this paper, we present a Gentzen-style sequent calculus for the lambdaPi-calculus and prove the cut-elimination theorem. The cut-elimination result builds upon the existence of normal forms for the natural deduction system and can be considered to be analogous to a proof provided by Prawitz for first-order logic. The type-theoretic setting considered (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the relationship between ATR 0 and.Jeremy Avigad - 1996 - Journal of Symbolic Logic 61 (3):768-779.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Saturated models of universal theories.Jeremy Avigad - 2002 - Annals of Pure and Applied Logic 118 (3):219-234.
    A notion called Herbrand saturation is shown to provide the model-theoretic analogue of a proof-theoretic method, Herbrand analysis, yielding uniform model-theoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet a third approach, which is finitary but retains the semantic flavor of the model-theoretic version.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Subrecursive degrees and fragments of Peano Arithmetic.Lars Kristiansen - 2001 - Archive for Mathematical Logic 40 (5):365-397.
    Let T 0?T 1 denote that each computable function, which is provable total in the first order theory T 0, is also provable total in the first order theory T 1. Te relation ? induces a degree structure on the sound finite Π2 extensions of EA (Elementary Arithmetic). This paper is devoted to the study of this structure. However we do not study the structure directly. Rather we define an isomorphic subrecursive degree structure <≤,?>, and then we study <≤,?> by (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Annual meeting of the association for symbolic logic: Notre dame, 1993.Steven Buechler - 1994 - Journal of Symbolic Logic 59 (2):696-719.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Simple Proof of Parsons' Theorem.Fernando Ferreira - 2005 - Notre Dame Journal of Formal Logic 46 (1):83-91.
    Let be the fragment of elementary Peano arithmetic in which induction is restricted to -formulas. More than three decades ago, Parsons showed that the provably total functions of are exactly the primitive recursive functions. In this paper, we observe that Parsons' result is a consequence of Herbrand's theorem concerning the -consequences of universal theories. We give a self-contained proof requiring only basic knowledge of mathematical logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Effective Bounds from ineffective proofs in analysis: An application of functional interpretation and majorization.Ulrich Kohlenbach - 1992 - Journal of Symbolic Logic 57 (4):1239-1273.
    We show how to extract effective bounds Φ for $\bigwedge u^1 \bigwedge v \leq_\gamma tu \bigvee w^\eta G_0$ -sentences which depend on u only (i.e. $\bigwedge u \bigwedge v \leq_\gamma tu \bigvee w \leq_\eta \Phi uG_0$ ) from arithmetical proofs which use analytical assumptions of the form \begin{equation*}\tag{*}\bigwedge x^\delta\bigvee y \leq_\rho sx \bigwedge z^\tau F_0\end{equation*} (γ, δ, ρ, and τ are arbitrary finite types, η ≤ 2, G0 and F0 are quantifier-free, and s and t are closed terms). If τ (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Harrington’s conservation theorem redone.Fernando Ferreira & Gilda Ferreira - 2008 - Archive for Mathematical Logic 47 (2):91-100.
    Leo Harrington showed that the second-order theory of arithmetic WKL 0 is ${\Pi^1_1}$ -conservative over the theory RCA 0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals.Ulrich Kohlenbach - 1996 - Archive for Mathematical Logic 36 (1):31-71.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Isomorphisms of Diagonalizable Algebras.V. Yu Shavrukov - 1997 - Theoria 63 (3):210-221.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Induction rules, reflection principles, and provably recursive functions.Lev D. Beklemishev - 1997 - Annals of Pure and Applied Logic 85 (3):193-242.
    A well-known result states that, over basic Kalmar elementary arithmetic EA, the induction schema for ∑n formulas is equivalent to the uniform reflection principle for ∑n + 1 formulas . We show that fragments of arithmetic axiomatized by various forms of induction rules admit a precise axiomatization in terms of reflection principles as well. Thus, the closure of EA under the induction rule for ∑n formulas is equivalent to ω times iterated ∑n reflection principle. Moreover, for k < ω, k (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)Formalizing forcing arguments in subsystems of second-order arithmetic.Jeremy Avigad - 1996 - Annals of Pure and Applied Logic 82 (2):165-191.
    We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen the conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths of proofs.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On nested simple recursion.Ján Komara - 2011 - Archive for Mathematical Logic 50 (5-6):617-624.
    We give a novel proof that primitive recursive functions are closed under nested simple recursion. This new presentation is supplied with a detailed proof which can be easily formalized in small fragments of Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Consistency statements and iterations of computable functions in IΣ1 and PRA.Joost J. Joosten - 2010 - Archive for Mathematical Logic 49 (7-8):773-798.
    In this paper we will state and prove some comparative theorems concerning PRA and IΣ1. We shall provide a characterization of IΣ1 in terms of PRA and iterations of a class of functions. In particular, we prove that for this class of functions the difference between IΣ1 and PRA is exactly that, where PRA is closed under iterations of these functions, IΣ1 is moreover provably closed under iteration. We will formulate a sufficient condition for a model of PRA to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Local induction and provably total computable functions.Andrés Cordón-Franco & F. Félix Lara-Martín - 2014 - Annals of Pure and Applied Logic 165 (9):1429-1444.
    Let Iπ2 denote the fragment of Peano Arithmetic obtained by restricting the induction scheme to parameter free Π2Π2 formulas. Answering a question of R. Kaye, L. Beklemishev showed that the provably total computable functions of Iπ2 are, precisely, the primitive recursive ones. In this work we give a new proof of this fact through an analysis of certain local variants of induction principles closely related to Iπ2. In this way, we obtain a more direct answer to Kaye's question, avoiding the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Odel's dialectica interpretation and its two-way stretch.Solomon Feferman - manuscript
    In 1958, G¨ odel published in the journal Dialectica an interpretation of intuitionistic number theory in a quantifier-free theory of functionals of finite type; this subsequently came to be known as G¨ odel’s functional or Dialectica interpretation. The article itself was written in German for an issue of that journal in honor of Paul Bernays’ 70th birthday. In 1965, Bernays told G¨.
    Download  
     
    Export citation  
     
    Bookmark   2 citations