Switch to: References

Add citations

You must login to add citations.
  1. Are machines radically contextualist?Ryan M. Nefdt - 2023 - Mind and Language 38 (3):750-771.
    In this article, I describe a novel position on the semantics of artificial intelligence. I present a problem for the current artificial neural networks used in machine learning, specifically with relation to natural language tasks. I then propose that from a metasemantic level, meaning in machines can best be interpreted as radically contextualist. Finally, I consider what this might mean for human‐level semantic competence from a comparative perspective.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to Make AlphaGo’s Children Explainable.Woosuk Park - 2022 - Philosophies 7 (3):55.
    Under the rubric of understanding the problem of explainability of AI in terms of abductive cognition, I propose to review the lessons from AlphaGo and her more powerful successors. As AI players in Baduk have arrived at superhuman level, there seems to be no hope for understanding the secret of their breathtakingly brilliant moves. Without making AI players explainable in some ways, both human and AI players would be less-than omniscient, if not ignorant, epistemic agents. Are we bound to have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Making AI Intelligible: Philosophical Foundations.Herman Cappelen & Josh Dever - 2021 - New York, USA: Oxford University Press.
    Can humans and artificial intelligences share concepts and communicate? Making AI Intelligible shows that philosophical work on the metaphysics of meaning can help answer these questions. Herman Cappelen and Josh Dever use the externalist tradition in philosophy to create models of how AIs and humans can understand each other. In doing so, they illustrate ways in which that philosophical tradition can be improved. The questions addressed in the book are not only theoretically interesting, but the answers have pressing practical implications. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Artificial Intelligence and Patient-Centered Decision-Making.Jens Christian Bjerring & Jacob Busch - 2020 - Philosophy and Technology 34 (2):349-371.
    Advanced AI systems are rapidly making their way into medical research and practice, and, arguably, it is only a matter of time before they will surpass human practitioners in terms of accuracy, reliability, and knowledge. If this is true, practitioners will have a prima facie epistemic and professional obligation to align their medical verdicts with those of advanced AI systems. However, in light of their complexity, these AI systems will often function as black boxes: the details of their contents, calculations, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Deep learning: A philosophical introduction.Cameron Buckner - 2019 - Philosophy Compass 14 (10):e12625.
    Deep learning is currently the most prominent and widely successful method in artificial intelligence. Despite having played an active role in earlier artificial intelligence and neural network research, philosophers have been largely silent on this technology so far. This is remarkable, given that deep learning neural networks have blown past predicted upper limits on artificial intelligence performance—recognizing complex objects in natural photographs and defeating world champions in strategy games as complex as Go and chess—yet there remains no universally accepted explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Using artificial intelligence to enhance patient autonomy in healthcare decision-making.Jose Luis Guerrero Quiñones - forthcoming - AI and Society:1-10.
    The use of artificial intelligence in healthcare contexts is highly controversial for the (bio)ethical conundrums it creates. One of the main problems arising from its implementation is the lack of transparency of machine learning algorithms, which is thought to impede the patient’s autonomous choice regarding their medical decisions. If the patient is unable to clearly understand why and how an AI algorithm reached certain medical decision, their autonomy is being hovered. However, there are alternatives to prevent the negative impact of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Exploratory Status of Postconnectionist Models.Miljana Milojevic & Vanja Subotić - 2020 - Theoria: Beograd 2 (63):135-164.
    This paper aims to offer a new view of the role of connectionist models in the study of human cognition through the conceptualization of the history of connectionism – from the simplest perceptrons to convolutional neural nets based on deep learning techniques, as well as through the interpretation of criticism coming from symbolic cognitive science. Namely, the connectionist approach in cognitive science was the target of sharp criticism from the symbolists, which on several occasions caused its marginalization and almost complete (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deep learning and cognitive science.Pietro Perconti & Alessio Plebe - 2020 - Cognition 203:104365.
    In recent years, the family of algorithms collected under the term ``deep learning'' has revolutionized artificial intelligence, enabling machines to reach human-like performances in many complex cognitive tasks. Although deep learning models are grounded in the connectionist paradigm, their recent advances were basically developed with engineering goals in mind. Despite of their applied focus, deep learning models eventually seem fruitful for cognitive purposes. This can be thought as a kind of biological exaptation, where a physiological structure becomes applicable for a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Philosophy of science at sea: Clarifying the interpretability of machine learning.Claus Beisbart & Tim Räz - 2022 - Philosophy Compass 17 (6):e12830.
    Philosophy Compass, Volume 17, Issue 6, June 2022.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Puzzle concerning Compositionality in Machines.Ryan M. Nefdt - 2020 - Minds and Machines 30 (1):47-75.
    This paper attempts to describe and address a specific puzzle related to compositionality in artificial networks such as Deep Neural Networks and machine learning in general. The puzzle identified here touches on a larger debate in Artificial Intelligence related to epistemic opacity but specifically focuses on computational applications of human level linguistic abilities or properties and a special difficulty with relation to these. Thus, the resulting issue is both general and unique. A partial solution is suggested.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Means-End Account of Explainable Artificial Intelligence.Oliver Buchholz - 2023 - Synthese 202 (33):1-23.
    Explainable artificial intelligence (XAI) seeks to produce explanations for those machine learning methods which are deemed opaque. However, there is considerable disagreement about what this means and how to achieve it. Authors disagree on what should be explained (topic), to whom something should be explained (stakeholder), how something should be explained (instrument), and why something should be explained (goal). In this paper, I employ insights from means-end epistemology to structure the field. According to means-end epistemology, different means ought to be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Deep Learning Applied to Scientific Discovery: A Hot Interface with Philosophy of Science.Louis Vervoort, Henry Shevlin, Alexey A. Melnikov & Alexander Alodjants - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (2):339-351.
    We review publications in automated scientific discovery using deep learning, with the aim of shedding light on problems with strong connections to philosophy of science, of physics in particular. We show that core issues of philosophy of science, related, notably, to the nature of scientific theories; the nature of unification; and of causation loom large in scientific deep learning. Therefore, advances in deep learning could, and ideally should, have impact on philosophy of science, and vice versa. We suggest lines of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Simple Models in Complex Worlds: Occam’s Razor and Statistical Learning Theory.Falco J. Bargagli Stoffi, Gustavo Cevolani & Giorgio Gnecco - 2022 - Minds and Machines 32 (1):13-42.
    The idea that “simplicity is a sign of truth”, and the related “Occam’s razor” principle, stating that, all other things being equal, simpler models should be preferred to more complex ones, have been long discussed in philosophy and science. We explore these ideas in the context of supervised machine learning, namely the branch of artificial intelligence that studies algorithms which balance simplicity and accuracy in order to effectively learn about the features of the underlying domain. Focusing on statistical learning theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The State Space of Artificial Intelligence.Holger Lyre - 2020 - Minds and Machines 30 (3):325-347.
    The goal of the paper is to develop and propose a general model of the state space of AI. Given the breathtaking progress in AI research and technologies in recent years, such conceptual work is of substantial theoretical interest. The present AI hype is mainly driven by the triumph of deep learning neural networks. As the distinguishing feature of such networks is the ability to self-learn, self-learning is identified as one important dimension of the AI state space. Another dimension is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations