Switch to: References

Add citations

You must login to add citations.
  1. The Consistency Strength of $$\aleph{\omega}$$ and $$\aleph{{\omega}_1}$$ Being Rowbottom Cardinals Without the Axiom of Choice.Arthur W. Apter & Peter Koepke - 2006 - Archive for Mathematical Logic 45 (6):721-737.
    We show that for all natural numbers n, the theory “ZF + DC $_{\aleph_n}$ + $\aleph_{\omega}$ is a Rowbottom cardinal carrying a Rowbottom filter” has the same consistency strength as the theory “ZFC + There exists a measurable cardinal”. In addition, we show that the theory “ZF + $\aleph_{\omega_1}$ is an ω 2-Rowbottom cardinal carrying an ω 2-Rowbottom filter and ω 1 is regular” has the same consistency strength as the theory “ZFC + There exist ω 1 measurable cardinals”. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Controlling the number of normal measures at successor cardinals.Arthur W. Apter - 2022 - Mathematical Logic Quarterly 68 (3):304-309.
    We examine the number of normal measures a successor cardinal can carry, in universes in which the Axiom of Choice is false. When considering successors of singular cardinals, we establish relative consistency results assuming instances of supercompactness, together with the Ultrapower Axiom (introduced by Goldberg in [12]). When considering successors of regular cardinals, we establish relative consistency results only assuming the existence of one measurable cardinal. This allows for equiconsistencies.
    Download  
     
    Export citation  
     
    Bookmark  
  • Long Borel hierarchies.Arnold W. Miller - 2008 - Mathematical Logic Quarterly 54 (3):307-322.
    We show that there is a model of ZF in which the Borel hierarchy on the reals has length ω2. This implies that ω1 has countable cofinality, so the axiom of choice fails very badly in our model. A similar argument produces models of ZF in which the Borel hierarchy has exactly λ + 1 levels for any given limit ordinal λ less than ω2. We also show that assuming a large cardinal hypothesis there are models of ZF in which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Making all cardinals almost Ramsey.Arthur W. Apter & Peter Koepke - 2008 - Archive for Mathematical Logic 47 (7-8):769-783.
    We examine combinatorial aspects and consistency strength properties of almost Ramsey cardinals. Without the Axiom of Choice, successor cardinals may be almost Ramsey. From fairly mild supercompactness assumptions, we construct a model of ZF + ${\neg {\rm AC}_\omega}$ in which every infinite cardinal is almost Ramsey. Core model arguments show that strong assumptions are necessary. Without successors of singular cardinals, we can weaken this to an equiconsistency of the following theories: “ZFC + There is a proper class of regular almost (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The strength of choiceless patterns of singular and weakly compact cardinals.Daniel Busche & Ralf Schindler - 2009 - Annals of Pure and Applied Logic 159 (1-2):198-248.
    We extend the core model induction technique to a choiceless context, and we exploit it to show that each one of the following two hypotheses individually implies that , the Axiom of Determinacy, holds in the of a generic extension of : every uncountable cardinal is singular, and every infinite successor cardinal is weakly compact and every uncountable limit cardinal is singular.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Consistency Strength of Two Choiceless Cardinal Patterns.Arthur W. Apter - 1999 - Notre Dame Journal of Formal Logic 40 (3):341-345.
    Using work of Devlin and Schindler in conjunction with work on Prikry forcing in a choiceless context done by the author, we show that two choiceless cardinal patterns have consistency strength of at least one Woodin cardinal.
    Download  
     
    Export citation  
     
    Bookmark  
  • Determinacy from strong compactness of ω1.Nam Trang & Trevor M. Wilson - 2021 - Annals of Pure and Applied Logic 172 (6):102944.
    Download  
     
    Export citation  
     
    Bookmark