Switch to: References

Add citations

You must login to add citations.
  1. The origin of mathematics.A. Seidenberg - 1978 - Archive for History of Exact Sciences 18 (4):301-342.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mathematical reasoning: induction, deduction and beyond.David Sherry - 2006 - Studies in History and Philosophy of Science Part A 37 (3):489-504.
    Mathematics used to be portrayed as a deductive science. Stemming from Polya, however, is a philosophical movement which broadens the concept of mathematical reasoning to include inductive or quasi-empirical methods. Interest in inductive methods is a welcome turn from foundationalism toward a philosophy grounded in mathematical practice. Regrettably, though, the conception of mathematical reasoning embraced by quasi-empiricists is still too narrow to include the sort of thought-experiment which Mueller describes as traditional mathematical proof and which Lakatos examines in Proofs and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pānini and Euclid: Reflections on Indian Geometry. [REVIEW]Johannes Bronkhorst - 2001 - Journal of Indian Philosophy 29 (1/2):43-80.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Theological Metaphors in Mathematics.Stanisław Krajewski - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):13-30.
    Examples of possible theological influences upon the development of mathematics are indicated. The best known connection can be found in the realm of infinite sets treated by us as known or graspable, which constitutes a divine-like approach. Also the move to treat infinite processes as if they were one finished object that can be identified with its limits is routine in mathematicians, but refers to seemingly super-human power. For centuries this was seen as wrong and even today some philosophers, for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reconstructing the Tantric Body: Elements of the Symbolism of Body in the Monistic Kaula and Trika Tantric Traditions. [REVIEW]Sthaneshwar Timalsina - 2012 - International Journal of Hindu Studies 16 (1):57-91.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the volume of a sphere.A. Seidenberg - 1988 - Archive for History of Exact Sciences 39 (2):97-119.
    Download  
     
    Export citation  
     
    Bookmark  
  • The ritual origin of counting.A. Seidenberg - 1962 - Archive for History of Exact Sciences 2 (1):1-40.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The mathematics in the structures of Stonehenge.Albert Kainzinger - 2011 - Archive for History of Exact Sciences 65 (1):67-97.
    The development of ancient civilizations and their achievements in sciences such as mathematics and astronomy are well researched for script-using civilizations. On the basis of oral tradition and mnemonic artifacts illiterate ancient civilizations were able to attain an adequate level of knowledge. The Neolithic and Bronze Age earthworks and circles are such mnemonic artifacts. Explanatory models are given for the shape of the stone formations and the ditch of Stonehenge reflecting the circular and specific non-circular shapes of these structures. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Thales's sure path.David Sherry - 1999 - Studies in History and Philosophy of Science Part A 30 (4):621-650.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On mathematical error.David Sherry - 1997 - Studies in History and Philosophy of Science Part A 28 (3):393-416.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A neolithic oral tradition for the van der Waerden/Seidenberg origin of mathematics.Jerold Mathews - 1985 - Archive for History of Exact Sciences 34 (3):193-220.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Meta-mathematics and meta-theology: An inquiry.Edward A. Maziarz - 1975 - Philosophia Mathematica (2):87-123.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the area of a semi-circle.A. Seidenberg - 1972 - Archive for History of Exact Sciences 9 (3):171-211.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Greek and Vedic Geometry.Frits Staal - 1999 - Journal of Indian Philosophy 27 (1/2):105-127.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The ritual origin of the circle and square.A. Seidenberg - 1981 - Archive for History of Exact Sciences 25 (4):269-327.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Diagrams, Conceptual Space and Time, and Latent Geometry.Lorenzo Magnani - 2022 - Axiomathes 32 (6):1483-1503.
    The “origins” of (geometric) space is examined from the perspective of the so-called “conceptual space” or “semantic space”. Semantic space is characterized by its fundamental “locality” that generates an “implicit” mode of geometrizing. This view is examined from within three perspectives. First, the role that various diagrammatic entities play in the everyday life and pragmatic activities of selected ethnic groups is illustrated. Secondly, it is shown how conceptual spaces are fundamentally linked to the meaning effects of particular natural languages and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Did Euclid's elements, book I, develop geometry axiomatically?A. Seidenberg - 1975 - Archive for History of Exact Sciences 14 (4):263-295.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Questions ethnographiques et mathématiques de la préhistoire.Olivier Keller - 1998 - Revue de Synthèse 119 (4):545-573.
    L'étude des mathématiques de la préhistoire ne peut être fondée uniquement sur les documents archéologiques bruts, sous peine de stérilité ; elle a tout intérêt à les mettre en situation grâce au comparatisme ethnographique, selon lequel les sociétés primitives actuelles ou récemment disparues nous renseignent sur nos ancêtres de la préhistoire. D'abord utilisée spontanément par quelques historiens des mathématiques, cette méthode est de nos jours rejetée en principe par le courant récent des ethnomathématiciens. Il s'agit de montrer par quelques exemples (...)
    Download  
     
    Export citation  
     
    Bookmark