Switch to: References

Add citations

You must login to add citations.
  1. Fundamentación ontológica del mundo virtual a partir de la filosofía de Nicolaï Hartmann.Alvaro Alberto Molina D'Jesús - 2021 - Sophia. Colección de Filosofía de la Educación 31:237-263.
    En el siguiente artículo se presenta una investigación filosófica acerca de la conformación ontológica delmundo virtual. Esta es un aporte teórico al debate contemporáneo de la filosofía de la computación sobrela caracterización ontológica de la computación digital y sus productos emergentes, ya que se propone unaaproximación a este campo de estudio desde la perspectiva filosófica de Nicolaï Hartmann. El objetivo principal del presente artículo es explicar la estratificación del mundo virtual a partir de la teoría ontológica de estratos y categorías (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Synchronous Online Philosophy Courses: An Experiment in Progress.Fritz McDonald - 2018 - APA Newsletter on Philosophy and Computers 18 (1):37-40.
    There are two main ways to teach a course online: synchronously or asynchronously. In an asynchronous course, students can log on at their convenience and do the course work. In a synchronous course, there is a requirement that all students be online at specific times, to allow for a shared course environment. In this article, the author discusses the strengths and weaknesses of synchronous online learning for the teaching of undergraduate philosophy courses. The author discusses specific strategies and technologies he (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is there any real substance to the claims for a 'new computationalism'?Alberto Hernandez-Espinosa, Hernandez-Quiroz Francisco & Zenil Hector - forthcoming - In Hernandez-Espinosa Alberto, Francisco Hernandez-Quiroz & Hector Zenil (eds.), CiE Computability in Europe 2017. Springer Verlag.
    'Computationalism' is a relatively vague term used to describe attempts to apply Turing's model of computation to phenomena outside its original purview: in modelling the human mind, in physics, mathematics, etc. Early versions of computationalism faced strong objections from many (and varied) quarters, from philosophers to practitioners of the aforementioned disciplines. Here we will not address the fundamental question of whether computational models are appropriate for describing some or all of the wide range of processes that they have been applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Practical Intractability: A Critique of the Hypercomputation Movement. [REVIEW]Aran Nayebi - 2014 - Minds and Machines 24 (3):275-305.
    For over a decade, the hypercomputation movement has produced computational models that in theory solve the algorithmically unsolvable, but they are not physically realizable according to currently accepted physical theories. While opponents to the hypercomputation movement provide arguments against the physical realizability of specific models in order to demonstrate this, these arguments lack the generality to be a satisfactory justification against the construction of any information-processing machine that computes beyond the universal Turing machine. To this end, I present a more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Concrete Digital Computation: What Does it Take for a Physical System to Compute? [REVIEW]Nir Fresco - 2011 - Journal of Logic, Language and Information 20 (4):513-537.
    This paper deals with the question: what are the key requirements for a physical system to perform digital computation? Time and again cognitive scientists are quick to employ the notion of computation simpliciter when asserting basically that cognitive activities are computational. They employ this notion as if there was or is a consensus on just what it takes for a physical system to perform computation, and in particular digital computation. Some cognitive scientists in referring to digital computation simply adhere to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Decision Problem for Effective Procedures.Nathan Salmón - 2023 - Logica Universalis 17 (2):161-174.
    The “somewhat vague, intuitive” notion from computability theory of an effective procedure (method) or algorithm can be fairly precisely defined even if it is not sufficiently formal and precise to belong to mathematics proper (in a narrow sense)—and even if (as many have asserted) for that reason the Church–Turing thesis is unprovable. It is proved logically that the class of effective procedures is not decidable, i.e., that no effective procedure is possible for ascertaining whether a given procedure is effective. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In Defense of the Unprovability of the Church-Turing Thesis.Selmer Bringsjord - unknown
    One of us has previously argued that the Church-Turing Thesis (CTT), contra Elliot Mendelson, is not provable, and is — light of the mind’s capacity for effortless hypercomputation — moreover false (e.g., [13]). But a new, more serious challenge has appeared on the scene: an attempt by Smith [28] to prove CTT. His case is a clever “squeezing argument” that makes crucial use of Kolmogorov-Uspenskii (KU) machines. The plan for the present paper is as follows. After covering some necessary preliminaries (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indistinguishable from magic: Computation is cognitive technology. [REVIEW]John Kadvany - 2010 - Minds and Machines 20 (1):119-143.
    This paper explains how mathematical computation can be constructed from weaker recursive patterns typical of natural languages. A thought experiment is used to describe the formalization of computational rules, or arithmetical axioms, using only orally-based natural language capabilities, and motivated by two accomplishments of ancient Indian mathematics and linguistics. One accomplishment is the expression of positional value using versified Sanskrit number words in addition to orthodox inscribed numerals. The second is Pāṇini’s invention, around the fifth century BCE, of a formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards an evaluation of the normalisation thesis on identity of proofs: The case of church-Turing thesis as Touchstone.Tiago de Castro Alves - 2020 - Manuscrito 43 (3):114-163.
    This article is a methodological discussion of formal approaches to the question of identity of proofs from a philosophical standpoint. First, an introduction to the question of identity of proofs itself is given, followed by a brief reconstruction of the so-called normalisation thesis, proposed by Dag Prawitz in 1971, in which some of its core mathematical and conceptual traits are presented. After that, a comparison between the normalisation thesis and the more well-known Church-Turing thesis on computability is carried out in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Significance of Models of Computation, from Turing Model to Natural Computation.Gordana Dodig-Crnkovic - 2011 - Minds and Machines 21 (2):301-322.
    The increased interactivity and connectivity of computational devices along with the spreading of computational tools and computational thinking across the fields, has changed our understanding of the nature of computing. In the course of this development computing models have been extended from the initial abstract symbol manipulating mechanisms of stand-alone, discrete sequential machines, to the models of natural computing in the physical world, generally concurrent asynchronous processes capable of modelling living systems, their informational structures and dynamics on both symbolic and (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations