Switch to: References

Citations of:

Hilbert's Programs and Beyond

Oxford, England: Oup Usa (2013)

Add citations

You must login to add citations.
  1. Chains of Life: Turing, Lebensform, and the Emergence of Wittgenstein’s Later Style.Juliet Floyd - 2016 - Nordic Wittgenstein Review 5 (2):7-89.
    This essay accounts for the notion of _Lebensform_ by assigning it a _logical _role in Wittgenstein’s later philosophy. Wittgenstein’s additions of the notion to his manuscripts of the _PI_ occurred during the initial drafting of the book 1936-7, after he abandoned his effort to revise _The Brown Book_. It is argued that this constituted a substantive step forward in his attitude toward the notion of simplicity as it figures within the notion of logical analysis. Next, a reconstruction of his later (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Gödel’s Philosophical Challenge.Wilfried Sieg - 2020 - Studia Semiotyczne 34 (1):57-80.
    The incompleteness theorems constitute the mathematical core of Gödel’s philosophical challenge. They are given in their “most satisfactory form”, as Gödel saw it, when the formality of theories to which they apply is characterized via Turing machines. These machines codify human mechanical procedures that can be carried out without appealing to higher cognitive capacities. The question naturally arises, whether the theorems justify the claim that the human mind has mathematical abilities that are not shared by any machine. Turing admits that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Najwcześniejsza postać formalizmu Hilberta.Jerzy Dadaczyński - 2019 - Filozofia Nauki 27 (3):117-129.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El enfoque epistemológico de David Hilbert: el a priori del conocimiento y el papel de la lógica en la fundamentación de la ciencia.Rodrigo Lopez-Orellana - 2019 - Principia: An International Journal of Epistemology 23 (2):279-308.
    This paper explores the main philosophical approaches of David Hilbert’s theory of proof. Specifically, it is focuses on his ideas regarding logic, the concept of proof, the axiomatic, the concept of truth, metamathematics, the a priori knowledge and the general nature of scientific knowledge. The aim is to show and characterize his epistemological approach on the foundation of knowledge, where logic appears as a guarantee of that foundation. Hilbert supposes that the propositional apriorism, proposed by him to support mathematics, sustains (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Axiomatics as ‘Symbolic Form’?Rossella Lupacchini - 2014 - Perspectives on Science 22 (1):1-34.
    Both Hilbert's axiomatics and Cassirer's philosophy of symbolic forms have their roots in Leibniz's idea of a 'universal characteristic,' and grow on Hertz's 'principles of mechanics,' and Dedekind's 'foundations of arithmetic'. As Cassirer recalls in the introduction to his Philosophy of Symbolic Forms, it was the discovery of the analysis of infinity that led Leibniz to focus on "the universal problem inherent in the function of symbolism, and to raise his 'universal characteristic' to a truly philosophical plane." In Leibniz's view, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics as a love of wisdom: Saunders Mac Lane as philosopher.Colin McLarty - 2020 - Philosophical Problems in Science 69:17-32.
    This note describes Saunders Mac Lane as a philosopher, and indeed as a paragon naturalist philosopher. He approaches philosophy as a mathematician. But, more than that, he learned philosophy from David Hilbert’s lectures on it, and by discussing it with Hermann Weyl, as much as he did by studying it with the mathematically informed Göttingen Philosophy professor Moritz Geiger.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation