Switch to: References

Add citations

You must login to add citations.
  1. Dedekind and Hilbert on the foundations of the deductive sciences.Ansten Klev - 2011 - Review of Symbolic Logic 4 (4):645-681.
    We offer an interpretation of the words and works of Richard Dedekind and the David Hilbert of around 1900 on which they are held to entertain diverging views on the structure of a deductive science. Firstly, it is argued that Dedekind sees the beginnings of a science in concepts, whereas Hilbert sees such beginnings in axioms. Secondly, it is argued that for Dedekind, the primitive terms of a science are substantive terms whose sense is to be conveyed by elucidation, whereas (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Hilbert's program and the omega-rule.Aleksandar Ignjatović - 1994 - Journal of Symbolic Logic 59 (1):322 - 343.
    In the first part of this paper we discuss some aspects of Detlefsen's attempt to save Hilbert's Program from the consequences of Godel's Second Incompleteness Theorem. His arguments are based on his interpretation of the long standing and well-known controversy on what, exactly, finitistic means are. In his paper [1] Detlefsen takes the position that there is a form of the ω-rule which is a finitistically valid means of proof, sufficient to prove the consistency of elementary number theory Z. On (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Dedekind and Wolffian Deductive Method.José Ferreirós & Abel Lassalle-Casanave - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):345-365.
    Dedekind’s methodology, in his classic booklet on the foundations of arithmetic, has been the topic of some debate. While some authors make it closely analogue to Hilbert’s early axiomatics, others emphasize its idiosyncratic features, most importantly the fact that no axioms are stated and its careful deductive structure apparently rests on definitions alone. In particular, the so-called Dedekind “axioms” of arithmetic are presented by him as “characteristic conditions” in the _definition_ of the complex concept of a _simply infinite_ system. Making (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Peano's axioms in their historical context.Michael Segre - 1994 - Archive for History of Exact Sciences 48 (3-4):201-342.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Hilbert, logicism, and mathematical existence.José Ferreirós - 2009 - Synthese 170 (1):33 - 70.
    David Hilbert’s early foundational views, especially those corresponding to the 1890s, are analysed here. I consider strong evidence for the fact that Hilbert was a logicist at that time, following upon Dedekind’s footsteps in his understanding of pure mathematics. This insight makes it possible to throw new light on the evolution of Hilbert’s foundational ideas, including his early contributions to the foundations of geometry and the real number system. The context of Dedekind-style logicism makes it possible to offer a new (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Dedekind’s Analysis of Number: Systems and Axioms.Wilfried Sieg & Dirk Schlimm - 2005 - Synthese 147 (1):121-170.
    Wilfred Sieg and Dirk Schlimm. Dedekind's Analysis of Number: Systems and Axioms.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Hilbert's Programs: 1917–1922.Wilfried Sieg - 1999 - Bulletin of Symbolic Logic 5 (1):1-44.
    Hilbert's finitist program was not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses that were given by Hilbert and prepared in collaboration with Bernays during the period from 1917 to 1922. These notes reveal a dialectic progression from a critical logicism through a radical constructivism toward finitism; the progression has (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Mathematical realism and gödel's incompleteness theorems.Richard Tieszen - 1994 - Philosophia Mathematica 2 (3):177-201.
    In this paper I argue that it is more difficult to see how Godel's incompleteness theorems and related consistency proofs for formal systems are consistent with the views of formalists, mechanists and traditional intuitionists than it is to see how they are consistent with a particular form of mathematical realism. If the incompleteness theorems and consistency proofs are better explained by this form of realism then we can also see how there is room for skepticism about Church's Thesis and the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)2000 Annual Meeting of the Association for Symbolic Logic.A. Pillay, D. Hallett, G. Hjorth, C. Jockusch, A. Kanamori, H. J. Keisler & V. McGee - 2000 - Bulletin of Symbolic Logic 6 (3):361-396.
    Download  
     
    Export citation  
     
    Bookmark  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations