Switch to: References

Citations of:

Relational EPR

Foundations of Physics 37 (3):427-445 (2007)

Add citations

You must login to add citations.
  1. Relational Quantum Mechanics and Contextuality.Calum Robson - 2024 - Foundations of Physics 54 (4):1-22.
    This paper discusses the question of stable facts in relational quantum mechanics (RQM). I examine how the approach to quantum logic in the consistent histories formalism can be used to clarify what infomation about a system can be shared between different observers. I suggest that the mathematical framework for Consistent Histories can and should be incorporated into RQM, whilst being clear on the interpretational differences between the two approaches. Finally I briefly discuss two related issues: the similarities and differences between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations.Jianhao M. Yang - 2024 - Foundations of Physics 54 (3):1-31.
    We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is introduced to define the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.Timotheus Riedel - 2024 - Studies in History and Philosophy of Science Part A 104 (C):109-118.
    The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency. Using Relational Quantum Mechanics (RQM) for a case study, this paper calls attention to a question that has been underappreciated in the debate about quantum relativism: the question of whether relativity iterates. Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on? It is argued that RQM (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consistent histories through pragmatist lenses.Quentin Ruyant - 2023 - Studies in History and Philosophy of Science Part A 98 (C):40-48.
    This article adopts a bottom-up approach to theory interpretation, following the slogan “meaning is use”, and applies it to quantum mechanics. I argue that it fits very well with the Consistent Histories formulation of quantum mechanics, interpreted in a particular way that is not the interpretation favoured by original proponents of the formulation. I examine the difficulties and advantages of this interpretation.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Relational Dissolution of the Quantum Measurement Problems.Andrea Oldofredi - 2022 - Foundations of Physics 53 (1):1-24.
    The Quantum Measurement Problem is arguably one of the most debated issues in the philosophy of Quantum Mechanics, since it represents not only a technical difficulty for the standard formulation of the theory, but also a source of interpretational disputes concerning the meaning of the quantum postulates. Another conundrum intimately connected with the QMP is the Wigner friend paradox, a thought experiment underlining the incoherence between the two dynamical laws governing the behavior of quantum systems, i.e the Schrödinger equation and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Perspectival Quantum Realism.Dennis Dieks - 2022 - Foundations of Physics 52 (4):1-20.
    The theories of pre-quantum physics are standardly seen as representing physical systems and their properties. Quantum mechanics in its standard form is a more problematic case: here, interpretational problems have led to doubts about the tenability of realist views. Thus, QBists and Quantum Pragmatists maintain that quantum mechanics should not be thought of as representing physical systems, but rather as an agent-centered tool for updating beliefs about such systems. It is part and parcel of such views that different agents may (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wigner’s friend and Relational Quantum Mechanics: A Reply to Laudisa.Nikki Weststeijn - 2021 - Foundations of Physics 51 (4):1-13.
    Relational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the system and the observer, there is no inconsistency in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields such as feminist science (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reformulating Bell's theorem: The search for a truly local quantum theory.Mordecai Waegell & Kelvin J. McQueen - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:39-50.
    The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. and Bell emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's "no-go" theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Notion of Locality in Relational Quantum Mechanics.P. Martin-Dussaud, C. Rovelli & F. Zalamea - 2019 - Foundations of Physics 49 (2):96-106.
    The term ‘locality’ is used in different contexts with different meanings. There have been claims that relational quantum mechanics is local, but it is not clear then how it accounts for the effects that go under the usual name of quantum non-locality. The present article shows that the failure of ‘locality’ in the sense of Bell, once interpreted in the relational framework, reduces to the existence of a common cause in an indeterministic context. In particular, there is no need to (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Open Problems in Relational Quantum Mechanics.Federico Laudisa - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):215-230.
    The Rovelli relational interpretation of quantum mechanics is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. Here I discuss two basic issues, that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Can We Make Sense of Relational Quantum Mechanics?Quentin Ruyant - 2018 - Foundations of Physics 48 (4):440-455.
    The relational interpretation of quantum mechanics proposes to solve the measurement problem and reconcile completeness and locality of quantum mechanics by postulating relativity to the observer for events and facts, instead of an absolute “view from nowhere”. The aim of this paper is to clarify this interpretation, and in particular, one of its central claims concerning the possibility for an observer to have knowledge about other observer’s events. I consider three possible readings of this claim, and develop the most promising (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Measurement Problem: Decoherence and Convivial Solipsism.Hervé Zwirn - 2016 - Foundations of Physics 46 (6):635-667.
    The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. The phenomenon of decoherence is often presented as a solution lying inside the pure quantum formalism and not demanding any particular philosophical assumption. Nevertheless, a widely debated question is to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Rovelli’s World.Bas C. van Fraassen - 2010 - Foundations of Physics 40 (4):390-417.
    Carlo Rovelli’s inspiring “Relational Quantum Mechanics” serves several aims at once: it provides a new vision of what the world of quantum mechanics is like, and it offers a program to derive the theory’s formalism from a set of simple postulates pertaining to information processing. I propose here to concentrate entirely on the former, to explore the world of quantum mechanics as Rovelli depicts it. It is a fascinating world in part because of Rovelli’s reliance on the information-theory approach to (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Modal Interpretations of Quantum Mechanics.Olimpia Lombardi & Dennis Dieks - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Reflective Metaphysics: Understanding Quantum Mechanics from a Kantian Standpoint.Michel Bitbol - 2010 - Philosophica 83 (1):53-83.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Non-Local Realistic Theories and the Scope of the Bell Theorem.Federico Laudisa - 2008 - Foundations of Physics 38 (12):1110-1132.
    According to a widespread view, the Bell theorem establishes the untenability of so-called ‘local realism’. On the basis of this view, recent proposals by Leggett, Zeilinger and others have been developed according to which it can be proved that even some non-local realistic theories have to be ruled out. As a consequence, within this view the Bell theorem allows one to establish that no reasonable form of realism, be it local or non-local, can be made compatible with the (experimentally tested) (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Epistemic–Pragmatist Interpretations of Quantum Mechanics: A Comparative Assessment.Ali Barzegar & Daniele Oriti - 2024 - Foundations of Physics 54 (5):1-34.
    In this paper, we investigate similarities and differences between the main neo-Copenhagen (or “epistemic–pragmatist”) interpretations of quantum mechanics, here identified as those defined by the rejection of an ontological nature of the quantum states and the simultaneous avoidance of hidden variables, while maintaining the quantum formalism unchanged. We argue that there is a single general interpretive framework in which the core claims that the various interpretations in the class are committed to, and which they emphasize to varying degrees, can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Defending the quantum reconstruction program.Philipp Berghofer - 2024 - European Journal for Philosophy of Science 14 (3):1-32.
    The program of reconstructing quantum theory based on information-theoretic principles enjoys much popularity in the foundations of physics. Surprisingly, this endeavor has only received very little attention in philosophy. Here I argue that this should change. This is because, on the one hand, reconstructions can help us to better understand quantum mechanics, and, on the other hand, reconstructions are themselves in need of interpretation. My overall objective, thus, is to motivate the reconstruction program and to show why philosophers should care. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Comment on Aurélien Drezet’s Defense of Relational Quantum Mechanics.Jay Lawrence, Marcin Markiewicz & Marek Żukowski - 2024 - Foundations of Physics 54 (4):1-5.
    Aurélien Drezet has attempted in Found. Phys. 54(1), 5 (2023) to defend Relational Quantum Mechanics (RQM) against our recent critique, entitled Relational Quantum Mechanics is incompatible with quantum mechanics, published in Quantum 7, 1015 (2023). Drezet not only misrepresents our work, but he also misconstructs the very theory (RQM) that he claims to defend.
    Download  
     
    Export citation  
     
    Bookmark  
  • Assessing relational quantum mechanics.Ricardo Muciño, Elias Okon & Daniel Sudarsky - 2022 - Synthese 200 (5):1-26.
    Relational Quantum Mechanics is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve the conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different observers exchange information. In this work, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation.Olimpia Lombardi & Juan Sebastián Ardenghi - 2022 - Foundations of Physics 52 (3):1-21.
    In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual enrichment. In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • QBism and Relational Quantum Mechanics compared.Jacques Pienaar - 2021 - Foundations of Physics 51 (5):1-18.
    The subjective Bayesian interpretation of quantum mechanics and Rovelli’s relational interpretation of quantum mechanics are both notable for embracing the radical idea that measurement outcomes correspond to events whose occurrence is relative to an observer. Here we provide a detailed study of their similarities and especially their differences.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Superdeterministic Rejections of Settings Independence.Gerardo Sanjuán Ciepielewski, Elias Okon & Daniel Sudarsky - 2021 - British Journal for the Philosophy of Science 74 (2):435-467.
    Relying on some auxiliary assumptions, usually considered mild, Bell’s theorem proves that no local theory can reproduce all the predictions of quantum mechanics. In this work, we introduce a fully local, superdeterministic model that by explicitly violating ‘settings independence’—one of these auxiliary assumptions, requiring statistical independence between measurement settings and systems to be measured—is able to reproduce all the predictions of quantum mechanics. Moreover, we show that contrary to widespread expectations, our model can break settings independence without an initial state (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Consistent Descriptions of Quantum Measurement.Jianhao M. Yang - 2019 - Foundations of Physics 49 (11):1306-1324.
    The Wigner’s friend type of thought experiments manifest the conceptual challenge on how different observers can have consistent descriptions of a quantum measurement event. In this paper, we analyze the extended version of Wigner’s friend thought experiment in detail and show that the reasoning process from each agent that leads to the no-go theorem is inconsistent. The inconsistency is with respect to the requirement that an agent should make use of updated information instead of outdated information. We then apply the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Mechanics and Perspectivalism.Dennis Dieks - unknown
    Experimental evidence of the last decades has made the status of ``collapses of the wave function'' even more shaky than it already was on conceptual grounds: interference effects turn out to be detectable even when collapses are typically expected to occur. Non-collapse interpretations should consequently be taken seriously. In this paper we argue that such interpretations suggest a perspectivalism according to which quantum objects are not characterized by monadic properties, but by relations to other systems. Accordingly, physical systems may possess (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • An Argument Against the Realistic Interpretation of the Wave Function.Carlo Rovelli - 2016 - Foundations of Physics 46 (10):1229-1237.
    Testable predictions of quantum mechanics are invariant under time reversal. But the evolution of the quantum state in time is not so, neither in the collapse nor in the no-collapse interpretations of the theory. This is a fact that challenges any realistic interpretation of the quantum state. On the other hand, this fact raises no difficulty if we interpret the quantum state as a mere calculation device, bookkeeping past real quantum events.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Relational quantum mechanics: Rovelli's world.Bas C. van Fraassen - 2010 - Discusiones Filosóficas 11 (17):13-51.
    El inspirador Relational Quantum Mechanicsde Carlo Rovelli cumple varios propósitosde manera simultánea: proporciona unanueva visión de cómo es el mundo de lamecánica cuántica y ofrece un programapara derivar el formalismo de la teoría deun conjunto de postulados simples quepertenecen al procesamiento de la información.Enesteartículopropongoquenosconcentremostotalmente en lo primero,para explorar el mundo de la mecánicacuántica tal como lo representa Rovelli.Es un mundo fascinante, en parte debidoa la dependencia de Rovelli sobre el enfoquedelateoríadelainformaciónparalosfundamentosdelamecánicacuántica,yen parte debido a que su presentaciónimplica asumir una postura en (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Locality.Robert B. Griffiths - 2011 - Foundations of Physics 41 (4):705-733.
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Bundle Theory Approach to Relational Quantum Mechanics.Andrea Oldofredi - 2021 - Foundations of Physics 51 (1):1-22.
    The present essay provides a new metaphysical interpretation of Relational Quantum Mechanics (RQM) in terms of mereological bundle theory. The essential idea is to claim that a physical system in RQM can be defined as a mereological fusion of properties whose values may vary for different observers. Abandoning the Aristotelian tradition centered on the notion of substance, I claim that RQM embraces an ontology of properties that finds its roots in the heritage of David Hume. To this regard, defining what (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Space is blue and birds fly through it.Carlo Rovelli - unknown
    Quantum mechanics is not about 'quantum states': it is about values of physical variables. I give a short fresh presentation and update on the *relational* perspective on the theory, and a comment on its philosophical implications.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Non-separability Does Not Relieve the Problem of Bell’s Theorem.Joe Henson - 2013 - Foundations of Physics 43 (8):1008-1038.
    This paper addresses arguments that “separability” is an assumption of Bell’s theorem, and that abandoning this assumption in our interpretation of quantum mechanics (a position sometimes referred to as “holism”) will allow us to restore a satisfying locality principle. Separability here means that all events associated to the union of some set of disjoint regions are combinations of events associated to each region taken separately.In this article, it is shown that: (a) localised events can be consistently defined without implying separability; (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Objectivity in Perspective: Relationism in the Interpretation of Quantum Mechanics. [REVIEW]Dennis Dieks - 2009 - Foundations of Physics 39 (7):760-775.
    Pekka Lahti is a prominent exponent of the renaissance of foundational studies in quantum mechanics that has taken place during the last few decades. Among other things, he and coworkers have drawn renewed attention to, and have analyzed with fresh mathematical rigor, the threat of inconsistency at the basis of quantum theory: ordinary measurement interactions, described within the mathematical formalism by Schrödinger-type equations of motion, seem to be unable to lead to the occurrence of definite measurement outcomes, whereas the same (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Relational quantum mechanics.Federico Laudisa - 2008 - Stanford Encyclopedia of Philosophy.
    Relational quantum mechanics is an interpretation of quantum theory which discards the notions of absolute state of a system, absolute value of its physical quantities, or absolute event. The theory describes only the way systems affect each other in the course of physical interactions. State and physical quantities refer always to the interaction, or the relation, between two systems. Nevertheless, the theory is assumed to be complete. The physical content of quantum theory is understood as expressing the net of relations (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Against 'Realism'.Travis Norsen - 2007 - Foundations of Physics 37 (3):311-340.
    We examine the prevalent use of the phrase “local realism” in the context of Bell’s Theorem and associated experiments, with a focus on the question: what exactly is the ‘realism’ in ‘local realism’ supposed to mean? Carefully surveying several possible meanings, we argue that all of them are flawed in one way or another as attempts to point out a second premise (in addition to locality) on which the Bell inequalities rest, and (hence) which might be rejected in the face (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Quantum relational indeterminacy.Claudio Calosi & Cristian Mariani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 71 (C):158-169.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence.Andrea Oldofredi & Claudio Calosi - 2021 - Foundations of Physics 51 (4):1-21.
    According to Relational Quantum Mechanics the wave function \ is considered neither a concrete physical item evolving in spacetime, nor an object representing the absolute state of a certain quantum system. In this interpretative framework, \ is defined as a computational device encoding observers’ information; hence, RQM offers a somewhat epistemic view of the wave function. This perspective seems to be at odds with the PBR theorem, a formal result excluding that wave functions represent knowledge of an underlying reality described (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relational Quantum Mechanics and Probability.M. Trassinelli - 2018 - Foundations of Physics 48 (9):1092-1111.
    We present a derivation of the third postulate of relational quantum mechanics from the properties of conditional probabilities. The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born’s rule naturally emerges from the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stop making sense of Bell’s theorem and nonlocality?Federico Laudisa - 2018 - European Journal for Philosophy of Science 8 (2):293-306.
    In a recent paper on Foundations of Physics, Stephen Boughn reinforces a view that is more shared in the area of the foundations of quantum mechanics than it would deserve, a view according to which quantum mechanics does not require nonlocality of any kind and the common interpretation of Bell theorem as a nonlocality result is based on a misunderstanding. In the present paper I argue that this view is based on an incorrect reading of the presuppositions of the EPR (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Humean Supervenience, Composition as Identity and Quantum Wholes.Claudio Calosi & Matteo Morganti - 2016 - Erkenntnis 81 (6):1173-1194.
    In this paper, we focus on two related reductive theses in metaphysics—Humean Supervenience and Composition as Identity—and on their status in light of the indications coming from science, in particular quantum mechanics. While defenders of these reductive theses claim that they can be updated so as to resist the quantum evidence, we provide arguments against this contention. We claim that physics gives us reason for thinking that both Humean Supervenience and Composition as Identity are at least contingently false, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Are Borders Inside or Outside?Arturo Tozzi - 2022 - Foundations of Science 27 (2):489-505.
    When a boat disappears over the horizon, does a distant observer detect the last moment in which the boat is visible, or the first moment in which the boat is not visible? This apparently ludicrous way of reasoning, heritage of long-lasting medieval debates on decision limit problems, paves the way to sophisticated contemporary debates concerning the methodological core of mathematics, physics and biology. These ancient, logically-framed conundrums throw us into the realm of bounded objects with fuzzy edges, where our mind (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Is the life-world reduction sufficient in quantum physics?Michel Bitbol - 2021 - Continental Philosophy Review (4):1-18.
    According to Husserl, the epochè must be left incomplete. It is to be performed step by step, thus defining various layers of “reduction.” In phenomenology at least two such layers can be distinguished: the life-world reduction, and the transcendental reduction. Quantum physics was born from a particular variety of the life-world reduction: reduction to observables according to Heisenberg, and reduction to classical-like properties of experimental devices according to Bohr. But QBism has challenged this limited version of the phenomenological reduction advocated (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Information, Reality, and Modern Physics.Emmanuel Saridakis - 2016 - International Studies in the Philosophy of Science 30 (4):327-341.
    Since special relativity and quantum mechanics, information has become a central concept in our description and understanding of physical reality. This statement may be construed in different ways, depending on the meaning we attach to the concept of information, and on our ontological commitments. One distinction is between mind-independent ‘Shannon information’ and a traditional conception of information, connected with meaning and knowledge. Another, orthogonal, distinction is between information considered as a fundamental physical entity, and an ontological agnosticism where physics is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal interpretations of quantum mechanics.Michael Dickson - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stable Facts, Relative Facts.Carlo Rovelli & Andrea Di Biagio - 2021 - Foundations of Physics 51 (1):1-13.
    Facts happen at every interaction, but they are not absolute: they are relative to the systems involved in the interaction. Stable facts are those whose relativity can effectively be ignored. In this work, we describe how stable facts emerge in a world of relative facts and discuss their respective roles in connecting quantum theory and the world. The distinction between relative and stable facts resolves the difficulties pointed out by the no-go theorem of Frauchiger and Renner, and is consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Is the life-world reduction sufficient in quantum physics?Michel Bitbol - 2020 - Continental Philosophy Review 54 (4):563-580.
    According to Husserl, the epochè (or suspension of judgment) must be left incomplete. It is to be performed step by step, thus defining various layers of “reduction.” In phenomenology at least two such layers can be distinguished: the life-world reduction, and the transcendental reduction. Quantum physics was born from a particular variety of the life-world reduction: reduction to observables according to Heisenberg, and reduction to classical-like properties of experimental devices according to Bohr. But QBism has challenged this limited version of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relational Analysis of the Frauchiger–Renner Paradox and Interaction-Free Detection of Records from the Past.Marijn Waaijer & Jan van Neerven - 2021 - Foundations of Physics 51 (2):1-18.
    We present an analysis of the Frauchiger–Renner Gedankenexperiment from the point of view of the relational interpretation of quantum mechanics. Our analysis shows that the paradox obtained by Frauchiger and Renner disappears if one rejects promoting one agent’s certainty to another agent’s certainty when it cannot be validated by records from the past. A by-product of our analysis is an interaction-free detection scheme for the existence of such records.
    Download  
     
    Export citation  
     
    Bookmark   1 citation