Switch to: References

Add citations

You must login to add citations.
  1. Why is Generative Grammar Recursive?Fintan Mallory - 2023 - Erkenntnis 88 (7):3097-3111.
    A familiar argument goes as follows: natural languages have infinitely many sentences, finite representation of infinite sets requires recursion; therefore any adequate account of linguistic competence will require some kind of recursive device. The first part of this paper argues that this argument is not convincing. The second part argues that it was not the original reason recursive devices were introduced into generative linguistics. The real basis for the use of recursive devices stems from a deeper philosophical concern; a grammar (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What are linguistic representations?David Adger - 2022 - Mind and Language 37 (2):248-260.
    Linguistic representations are taken by some to be representations of something, specifically of Standard Linguistic Entities, such as phonemes, clauses, noun phrases etc. This perspective takes them to be intentional. Rey (2021) further argues that the SLEs themselves are inexistent. Here I argue that linguistic representations are simply structures, abstractions of brain states, and hence not intentional, and show how they nevertheless connect to the systems that use them.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A schematic definition of quantum polynomial time computability.Tomoyuki Yamakami - 2020 - Journal of Symbolic Logic 85 (4):1546-1587.
    In the past four decades, the notion of quantum polynomial-time computability has been mathematically modeled by quantum Turing machines as well as quantum circuits. This paper seeks the third model, which is a quantum analogue of the schematic definition of recursive functions. For quantum functions mapping finite-dimensional Hilbert spaces to themselves, we present such a schematic definition, composed of a small set of initial quantum functions and a few construction rules that dictate how to build a new quantum function from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hypercomputation and the Physical Church‐Turing Thesis.Paolo Cotogno - 2003 - British Journal for the Philosophy of Science 54 (2):181-223.
    A version of the Church-Turing Thesis states that every effectively realizable physical system can be simulated by Turing Machines (‘Thesis P’). In this formulation the Thesis appears to be an empirical hypothesis, subject to physical falsification. We review the main approaches to computation beyond Turing definability (‘hypercomputation’): supertask, non-well-founded, analog, quantum, and retrocausal computation. The conclusions are that these models reduce to supertasks, i.e. infinite computation, and that even supertasks are no solution for recursive incomputability. This yields that the realization (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Philosophy of Computer Science.William J. Rapaport - 2005 - Teaching Philosophy 28 (4):319-341.
    There are many branches of philosophy called “the philosophy of X,” where X = disciplines ranging from history to physics. The philosophy of artificial intelligence has a long history, and there are many courses and texts with that title. Surprisingly, the philosophy of computer science is not nearly as well-developed. This article proposes topics that might constitute the philosophy of computer science and describes a course covering those topics, along with suggested readings and assignments.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Computation, hypercomputation, and physical science.Konstantine Arkoudas - 2008 - Journal of Applied Logic 6 (4):461-475.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Representational Foundations of Computation.Michael Rescorla - 2015 - Philosophia Mathematica 23 (3):338-366.
    Turing computation over a non-linguistic domain presupposes a notation for the domain. Accordingly, computability theory studies notations for various non-linguistic domains. It illuminates how different ways of representing a domain support different finite mechanical procedures over that domain. Formal definitions and theorems yield a principled classification of notations based upon their computational properties. To understand computability theory, we must recognize that representation is a key target of mathematical inquiry. We must also recognize that computability theory is an intensional enterprise: it (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Agent-based modeling: the right mathematics for the social sciences?Paul Borrill & Leigh Tesfatsion - 2011 - In J. B. Davis & D. W. Hands (eds.), Elgar Companion to Recent Economic Methodology. Edward Elgar Publishers. pp. 228.
    This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research. The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate concretely the duality (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Turing oracle machines, online computing, and three displacements in computability theory.Robert I. Soare - 2009 - Annals of Pure and Applied Logic 160 (3):368-399.
    We begin with the history of the discovery of computability in the 1930’s, the roles of Gödel, Church, and Turing, and the formalisms of recursive functions and Turing automatic machines . To whom did Gödel credit the definition of a computable function? We present Turing’s notion [1939, §4] of an oracle machine and Post’s development of it in [1944, §11], [1948], and finally Kleene-Post [1954] into its present form. A number of topics arose from Turing functionals including continuous functionals on (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Concrete Digital Computation: What Does it Take for a Physical System to Compute? [REVIEW]Nir Fresco - 2011 - Journal of Logic, Language and Information 20 (4):513-537.
    This paper deals with the question: what are the key requirements for a physical system to perform digital computation? Time and again cognitive scientists are quick to employ the notion of computation simpliciter when asserting basically that cognitive activities are computational. They employ this notion as if there was or is a consensus on just what it takes for a physical system to perform computation, and in particular digital computation. Some cognitive scientists in referring to digital computation simply adhere to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Syntactic Structures and Recursive Devices: A Legacy of Imprecision. [REVIEW]Marcus Tomalin - 2011 - Journal of Logic, Language and Information 20 (3):297-315.
    Taking Chomsky’s Syntactic Structures as a starting point, this paper explores the use of recursive techniques in contemporary linguistic theory. Specifically, it is shown that there were profound ambiguities surrounding the notion of recursion in the 1950s, and that this was partly due to the fact that influential texts such as Syntactic Structures neglected to define what exactly constituted a recursive device. As a result, uncertainties concerning the role of recursion in linguistic theory have prevailed until the present day, and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Parsimony hierarchies for inductive inference.Andris Ambainis, John Case, Sanjay Jain & Mandayam Suraj - 2004 - Journal of Symbolic Logic 69 (1):287-327.
    Freivalds defined an acceptable programming system independent criterion for learning programs for functions in which the final programs were required to be both correct and "nearly" minimal size, i.e., within a computable function of being purely minimal size. Kinber showed that this parsimony requirement on final programs limits learning power. However, in scientific inference, parsimony is considered highly desirable. A lim-computablefunction is (by definition) one calculable by a total procedure allowed to change its mind finitely many times about its output. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective Presentability of Boolean Algebras of Cantor-Bendixson Rank 1.Rod Downey & Carl G. Jockusch - 1999 - Journal of Symbolic Logic 64 (1):45-52.
    We show that there is a computable Boolean algebra $\mathscr{B}$ and a computably enumerable ideal I of $\mathscr{B}$ such that the quotient algebra $\mathscr{B}/I$ is of Cantor-Bendixson rank 1 and is not isomorphic to any computable Boolean algebra. This extends a result of L. Feiner and is deduced from Feiner's result even though Feiner's construction yields a Boolean algebra of infinite Cantor-Bendixson rank.
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Church’s thesis be viewed as a Carnapian explication?Paula Quinon - 2019 - Synthese 198 (Suppl 5):1047-1074.
    Turing and Church formulated two different formal accounts of computability that turned out to be extensionally equivalent. Since the accounts refer to different properties they cannot both be adequate conceptual analyses of the concept of computability. This insight has led to a discussion concerning which account is adequate. Some authors have suggested that this philosophical debate—which shows few signs of converging on one view—can be circumvented by regarding Church’s and Turing’s theses as explications. This move opens up the possibility that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-standard numbers: a semantic obstacle for modelling arithmetical reasoning.Anderson De Araújo & Walter Carnielli - 2012 - Logic Journal of the IGPL 20 (2):477-485.
    The existence of non-standard numbers in first-order arithmetics is a semantic obstacle for modelling our arithmetical skills. This article argues that so far there is no adequate approach to overcome such a semantic obstacle, because we can also find out, and deal with, non-standard elements in Turing machines.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Generalized cohesiveness.Tamara Hummel & Carl Jockusch - 1999 - Journal of Symbolic Logic 64 (2):489-516.
    We study some generalized notions of cohesiveness which arise naturally in connection with effective versions of Ramsey's Theorem. An infinite set A of natural numbers is n-cohesive (respectively, n-r-cohesive) if A is almost homogeneous for every computably enumerable (respectively, computable) 2-coloring of the n-element sets of natural numbers. (Thus the 1-cohesive and 1-r-cohesive sets coincide with the cohesive and r-cohesive sets, respectively.) We consider the degrees of unsolvability and arithmetical definability levels of n-cohesive and n-r-cohesive sets. For example, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Implicit and Explicit Examples of the Phenomenon of Deviant Encodings.Paula Quinon - 2020 - Studies in Logic, Grammar and Rhetoric 63 (1):53-67.
    The core of the problem discussed in this paper is the following: the Church-Turing Thesis states that Turing Machines formally explicate the intuitive concept of computability. The description of Turing Machines requires description of the notation used for the input and for the output. Providing a general definition of notations acceptable in the process of computations causes problems. This is because a notation, or an encoding suitable for a computation, has to be computable. Yet, using the concept of computation, in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Universal History and the Emergence of Species Being.Brown Haines - manuscript
    This paper seeks to recover the function of universal history, which was to place particulars into relation with universals. By the 20th century universal history was largely discredited because of an idealism that served to lend epistemic coherence to the overwhelming complexity arising from universal history's comprehensive scope. Idealism also attempted to account for history's being "open"--for the human ability to transcend circumstance. The paper attempts to recover these virtues without the idealism by defining universal history not by its scope (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dynamic notions of genericity and array noncomputability.Benjamin Schaeffer - 1998 - Annals of Pure and Applied Logic 95 (1-3):37-69.
    We examine notions of genericity intermediate between 1-genericity and 2-genericity, especially in relation to the Δ20 degrees. We define a new kind of genericity, dynamic genericity, and prove that it is stronger than pb-genericity. Specifically, we show there is a Δ20 pb-generic degree below which the pb-generic degrees fail to be downward dense and that pb-generic degrees are downward dense below every dynamically generic degree. To do so, we examine the relation between genericity and array noncomputability, deriving some structural information (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Vom Zahlen zu den Zahlen: On the Relation Between Computation and Arithmetical Structuralism.L. Horsten - 2012 - Philosophia Mathematica 20 (3):275-288.
    This paper sketches an answer to the question how we, in our arithmetical practice, succeed in singling out the natural-number structure as our intended interpretation. It is argued that we bring this about by a combination of what we assert about the natural-number structure on the one hand, and our computational capacities on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Platonistic formalism.L. Horsten - 2001 - Erkenntnis 54 (2):173-194.
    The present paper discusses a proposal which says,roughly and with several qualifications, that thecollection of mathematical truths is identical withthe set of theorems of ZFC. It is argued that thisproposal is not as easily dismissed as outright falseor philosophically incoherent as one might think. Some morals of this are drawn for the concept ofmathematical knowledge.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Universal Prediction: A Philosophical Investigation.Tom F. Sterkenburg - 2018 - Dissertation, University of Groningen
    In this thesis I investigate the theoretical possibility of a universal method of prediction. A prediction method is universal if it is always able to learn from data: if it is always able to extrapolate given data about past observations to maximally successful predictions about future observations. The context of this investigation is the broader philosophical question into the possibility of a formal specification of inductive or scientific reasoning, a question that also relates to modern-day speculation about a fully automatized (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Difference sets and computability theory.Rod Downey, Zoltán Füredi, Carl G. Jockusch & Lee A. Rubel - 1998 - Annals of Pure and Applied Logic 93 (1-3):63-72.
    For a set A of non-negative integers, let D be the set of non-negative differences of elements of A. Clearly, if A is computable, then D is computably enumerable. We show that every simple set which contains 0 is the difference set of some computable set and that every computably enumerable set is computably isomorphic to the difference set of some computable set. Also, we prove that there is a computable set which is the difference set of the complement of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Church's Thesis and the Conceptual Analysis of Computability.Michael Rescorla - 2007 - Notre Dame Journal of Formal Logic 48 (2):253-280.
    Church's thesis asserts that a number-theoretic function is intuitively computable if and only if it is recursive. A related thesis asserts that Turing's work yields a conceptual analysis of the intuitive notion of numerical computability. I endorse Church's thesis, but I argue against the related thesis. I argue that purported conceptual analyses based upon Turing's work involve a subtle but persistent circularity. Turing machines manipulate syntactic entities. To specify which number-theoretic function a Turing machine computes, we must correlate these syntactic (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Human-Effective Computability†.Marianna Antonutti Marfori & Leon Horsten - 2018 - Philosophia Mathematica 27 (1):61-87.
    We analyse Kreisel’s notion of human-effective computability. Like Kreisel, we relate this notion to a concept of informal provability, but we disagree with Kreisel about the precise way in which this is best done. The resulting two different ways of analysing human-effective computability give rise to two different variants of Church’s thesis. These are both investigated by relating them to transfinite progressions of formal theories in the sense of Feferman.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cuppability of Simple and Hypersimple Sets.Martin Kummer & Marcus Schaefer - 2007 - Notre Dame Journal of Formal Logic 48 (3):349-369.
    An incomplete degree is cuppable if it can be joined by an incomplete degree to a complete degree. For sets fulfilling some type of simplicity property one can now ask whether these sets are cuppable with respect to a certain type of reducibilities. Several such results are known. In this paper we settle all the remaining cases for the standard notions of simplicity and all the main strong reducibilities.
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Bounded Immunity and Btt‐Reductions.Stephen Fenner & Marcus Schaefer - 1999 - Mathematical Logic Quarterly 45 (1):3-21.
    We define and study a new notion called k-immunity that lies between immunity and hyperimmunity in strength. Our interest in k-immunity is justified by the result that θ does not k-tt reduce to a k-immune set, which improves a previous result by Kobzev [7]. We apply the result to show that Φ′ does not btt-reduce to MIN, the set of minimal programs. Other applications include the set of Kolmogorov random strings, and retraceable and regressive sets. We also give a new (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Practical Intractability: A Critique of the Hypercomputation Movement. [REVIEW]Aran Nayebi - 2014 - Minds and Machines 24 (3):275-305.
    For over a decade, the hypercomputation movement has produced computational models that in theory solve the algorithmically unsolvable, but they are not physically realizable according to currently accepted physical theories. While opponents to the hypercomputation movement provide arguments against the physical realizability of specific models in order to demonstrate this, these arguments lack the generality to be a satisfactory justification against the construction of any information-processing machine that computes beyond the universal Turing machine. To this end, I present a more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Not To Use the Church-Turing Thesis Against Platonism.R. Urbaniak - 2011 - Philosophia Mathematica 19 (1):74-89.
    Olszewski claims that the Church-Turing thesis can be used in an argument against platonism in philosophy of mathematics. The key step of his argument employs an example of a supposedly effectively computable but not Turing-computable function. I argue that the process he describes is not an effective computation, and that the argument relies on the illegitimate conflation of effective computability with there being a way to find out . ‘Ah, but,’ you say, ‘what’s the use of its being right twice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Turing machines.David Barker-Plummer - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Is there a nonrecursive decidable equational theory?Benjamin Wells - 2002 - Minds and Machines 12 (2):301-324.
    The Church-Turing Thesis (CTT) is often paraphrased as ``every computable function is computable by means of a Turing machine.'' The author has constructed a family of equational theories that are not Turing-decidable, that is, given one of the theories, no Turing machine can recognize whether an arbitrary equation is in the theory or not. But the theory is called pseudorecursive because it has the additional property that when attention is limited to equations with a bounded number of variables, one obtains, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Codable sets and orbits of computably enumerable sets.Leo Harrington & Robert Soare - 1998 - Journal of Symbolic Logic 63 (1):1-28.
    A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let ε denote the structure of the computably enumerable sets under inclusion, $\varepsilon = (\{W_e\}_{e\in \omega}, \subseteq)$ . We previously exhibited a first order ε-definable property Q(X) such that Q(X) guarantees that X is not Turing complete (i.e., does not code complete information about c.e. sets). Here we show first that Q(X) implies that X has (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Definable properties of the computably enumerable sets.Leo Harrington & Robert I. Soare - 1998 - Annals of Pure and Applied Logic 94 (1-3):97-125.
    Post in 1944 began studying properties of a computably enumerable set A such as simple, h-simple, and hh-simple, with the intent of finding a property guaranteeing incompleteness of A . From the observations of Post and Myhill , attention focused by the 1950s on properties definable in the inclusion ordering of c.e. subsets of ω, namely E = . In the 1950s and 1960s Tennenbaum, Martin, Yates, Sacks, Lachlan, Shoenfield and others produced a number of elegant results relating ∄-definable properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • 1998–99 Annual Meeting of the Association for Symbolic Logic.Sam Buss - 1999 - Bulletin of Symbolic Logic 5 (3):395-421.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Definability, automorphisms, and dynamic properties of computably enumerable sets.Leo Harrington & Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (2):199-213.
    We announce and explain recent results on the computably enumerable (c.e.) sets, especially their definability properties (as sets in the spirit of Cantor), their automorphisms (in the spirit of Felix Klein's Erlanger Programm), their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and the Martin Invariance Conjecture on their Turing degrees, i.e., their information content with respect to relative computability (Turing reducibility).
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Immunity properties and strong positive reducibilities.Irakli O. Chitaia, Roland Sh Omanadze & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):341-352.
    We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\rm ss} B}$$\end{document} (respectively, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\overline{\rm s}} B}$$\end{document}): here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\le_{\overline{\rm (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Concept of Recursion in Cognitive Studies. Part I: From Mathematics to Cognition.И. Ф Михайлов - 2024 - Philosophical Problems of IT and Cyberspace (PhilIT&C) 1:58-76.
    The paper discusses different approaches to the concept of recursion and its evolution from mathematics to cognitive studies. Such approaches are observed as: self‑embedded structures, multiple hierarchical levels using the same rule, and embedding structures within structures. The paper also discusses the concept of meta‑recursion. Examining meta‑recursion may enable understanding of the ability to apply recursive processes to multilayered hierarchies, with recursive procedures acting as generators. These types of recursive processes could be the fundamental elements of general cognition. The paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstract complexity theory and the Δ20 degrees.Benjamin Schaeffer - 2002 - Annals of Pure and Applied Logic 115 (1-3):195-231.
    We show how Abstract Complexity Theory is related to the degrees of unsolvability and develop machinery by which computability theoretic hierarchies with a complexity theoretic flavor can be defined and investigated. This machinery is used to prove results both on hierarchies of Δ 2 0 sets and hierarchies of Δ 2 0 degrees. We prove a near-optimal lower bound on the effectivity of the Low Basis Theorem and a result showing that array computable c.e. degrees are, in some sense, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Definability, Automorphisms, And Dynamic Properties Of Computably Enumerable Sets, By, Pages 199 -- 213.Leo Harrington & Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (2):199-213.
    We announce and explain recent results on the computably enumerable sets, especially their definability properties, their automorphisms, their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and the Martin Invariance Conjecture on their Turing degrees, i.e., their information content with respect to relative computability.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Computational Conundrum: “What is a Computer?” A Historical Overview.Istvan S. N. Berkeley - 2018 - Minds and Machines 28 (3):375-383.
    This introduction begins by posing the question that this Special Issue addresses and briefly considers historical precedents and why the issue is important. The discussion then moves on to the consideration of important milestones in the history of computing, up until the present time. A brief specification of the essential components of computational systems is then offered. The final section introduces the papers that are included in this volume.
    Download  
     
    Export citation  
     
    Bookmark  
  • How minds can be computational systems.William J. Rapaport - 1998 - Journal of Experimental and Theoretical Artificial Intelligence 10 (4):403-419.
    The proper treatment of computationalism, as the thesis that cognition is computable, is presented and defended. Some arguments of James H. Fetzer against computationalism are examined and found wanting, and his positive theory of minds as semiotic systems is shown to be consistent with computationalism. An objection is raised to an argument of Selmer Bringsjord against one strand of computationalism, namely, that Turing-Test± passing artifacts are persons, it is argued that, whether or not this objection holds, such artifacts will inevitably (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Sobre el anti-realismo de Wittgenstein y su aplicación al programa chomskiano.Sergio Mota - 2014 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 4:35--51.
    Download  
     
    Export citation  
     
    Bookmark