Switch to: References

Add citations

You must login to add citations.
  1. Minimal α-degrees.Richard A. Shore - 1972 - Annals of Mathematical Logic 4 (4):393-414.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The structure of the honest polynomial m-degrees.Rod Downey, William Gasarch & Michael Moses - 1994 - Annals of Pure and Applied Logic 70 (2):113-139.
    We prove a number of structural theorems about the honest polynomial m-degrees contingent on the assumption P = NP . In particular, we show that if P = NP , then the topped finite initial segments of Hm are exactly the topped finite distributive lattices, the topped initial segments of Hm are exactly the direct limits of ascending sequences of finite distributive lattices, and all recursively presentable distributive lattices are initial segments of Hm ∩ RE. Additionally, assuming ¦∑¦ = 1, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetical Sacks Forcing.Rod Downey & Liang Yu - 2006 - Archive for Mathematical Logic 45 (6):715-720.
    We answer a question of Jockusch by constructing a hyperimmune-free minimal degree below a 1-generic one. To do this we introduce a new forcing notion called arithmetical Sacks forcing. Some other applications are presented.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Controlling Effective Packing Dimension of $Delta^{0}_{2}$ Degrees.Jonathan Stephenson - 2016 - Notre Dame Journal of Formal Logic 57 (1):73-93.
    This paper presents a refinement of a result by Conidis, who proved that there is a real $X$ of effective packing dimension $0\lt \alpha\lt 1$ which cannot compute any real of effective packing dimension $1$. The original construction was carried out below $\emptyset''$, and this paper’s result is an improvement in the effectiveness of the argument, constructing such an $X$ by a limit-computable approximation to get $X\leq_{T}\emptyset'$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lattice nonembeddings and intervals of the recursively enumerable degrees.Peter Cholak & Rod Downey - 1993 - Annals of Pure and Applied Logic 61 (3):195-221.
    Let b and c be r.e. Turing degrees such that b>c. We show that there is an r.e. degree a such that b>a>c and all lattices containing a critical triple, including the lattice M5, cannot be embedded into the interval [c, a].
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Enumeration reducibility and partial degrees.John Case - 1971 - Annals of Mathematical Logic 2 (4):419-439.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Generic degrees are complemented.Masahiro Kumabe - 1993 - Annals of Pure and Applied Logic 59 (3):257-272.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Empty intervals in the enumeration degrees.Thomas F. Kent, Andrew Em Lewis & Andrea Sorbi - 2012 - Annals of Pure and Applied Logic 163 (5):567-574.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the enumeration degrees (D\sb e) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Degrees of unsolvability complementary between recursively enumerable degrees, Part I.S. B. Cooper - 1972 - Annals of Mathematical Logic 4 (1):31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Upper bounds for the arithmetical degrees.M. Lerman - 1985 - Annals of Pure and Applied Logic 29 (3):225-254.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A degree-theoretic definition of the ramified analytical hierarchy.Carl G. Jockusch & Stephen G. Simpson - 1976 - Annals of Mathematical Logic 10 (1):1-32.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Closed choice and a uniform low basis theorem.Vasco Brattka, Matthew de Brecht & Arno Pauly - 2012 - Annals of Pure and Applied Logic 163 (8):986-1008.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Degree structures: Local and global investigations.Richard A. Shore - 2006 - Bulletin of Symbolic Logic 12 (3):369-389.
    The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.Institutionally, it was an honor to serve as President of the Association and I want to thank my teachers and predecessors for guidance and advice and my fellow officers and our publisher for their work and support. To all of the members who answered my calls to chair or serve on this or that committee, I offer my thanks as well. Your (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reducibility orderings: Theories, definability and automorphisms.Anil Nerode & Richard A. Shore - 1980 - Annals of Mathematical Logic 18 (1):61-89.
    Download  
     
    Export citation  
     
    Bookmark   16 citations