Switch to: References

Add citations

You must login to add citations.
  1. Regularity properties for dominating projective sets.Jörg Brendle, Greg Hjorth & Otmar Spinas - 1995 - Annals of Pure and Applied Logic 72 (3):291-307.
    We show that every dominating analytic set in the Baire space has a dominating closed subset. This improves a theorem of Spinas [15] saying that every dominating analytic set contains the branches of a uniform tree, i.e. a superperfect tree with the property that for every splitnode all the successor splitnodes have the same length. In [15], a subset of the Baire space is called u-regular if either it is not dominating or it contains the branches of a uniform tree, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Analytic countably splitting families.Otmar Spinas - 2004 - Journal of Symbolic Logic 69 (1):101-117.
    A family A ⊆ ℘(ω) is called countably splitting if for every countable $F \subseteq [\omega]^{\omega}$ , some element of A splits every member of F. We define a notion of a splitting tree, by means of which we prove that every analytic countably splitting family contains a closed countably splitting family. An application of this notion solves a problem of Blass. On the other hand we show that there exists an $F_{\sigma}$ splitting family that does not contain a closed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Solovay-Type Characterizations for Forcing-Algebras.Jörg Brendle & Benedikt Löwe - 1999 - Journal of Symbolic Logic 64 (3):1307-1323.
    We give characterizations for the sentences "Every $\Sigma^1_2$-set is measurable" and "Every $\Delta^1_2$-set is measurable" for various notions of measurability derived from well-known forcing partial orderings.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Forcing indestructibility of MAD families.Jörg Brendle & Shunsuke Yatabe - 2005 - Annals of Pure and Applied Logic 132 (2):271-312.
    Let A[ω]ω be a maximal almost disjoint family and assume P is a forcing notion. Say A is P-indestructible if A is still maximal in any P-generic extension. We investigate P-indestructibility for several classical forcing notions P. In particular, we provide a combinatorial characterization of P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families which are P-indestructible yet Q-destructible for several pairs of forcing notions . We close with a detailed investigation of iterated Sacks indestructibility.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Dominating and unbounded free sets.Slawomir Solecki & Otmar Spinas - 1999 - Journal of Symbolic Logic 64 (1):75-80.
    We prove that every analytic set in ω ω × ω ω with σ-bounded sections has a not σ-bounded closed free set. We show that this result is sharp. There exists a closed set with bounded sections which has no dominating analytic free set, and there exists a closed set with non-dominating sections which does not have a not σ-bounded analytic free set. Under projective determinacy analytic can be replaced in the above results by projective.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Strongly dominating sets of reals.Michal Dečo & Miroslav Repický - 2013 - Archive for Mathematical Logic 52 (7-8):827-846.
    We analyze the structure of strongly dominating sets of reals introduced in Goldstern et al. (Proc Am Math Soc 123(5):1573–1581, 1995). We prove that for every κ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strongly unbounded and strongly dominating sets of reals generalized.Michal Dečo - 2015 - Archive for Mathematical Logic 54 (7-8):825-838.
    We generalize the notions of strongly dominating and strongly unbounded subset of the Baire space. We compare the corresponding ideals and tree ideals, in particular we present a condition which implies that some of those ideals are distinct. We also introduce DUI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{DU}_\mathcal{I}}$$\end{document}-property, where I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} is an ideal on cardinal κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, to capture these two (...)
    Download  
     
    Export citation  
     
    Bookmark