Switch to: References

Citations of:

Generic trees

Journal of Symbolic Logic 60 (3):705-726 (1995)

Add citations

You must login to add citations.
  1. On splitting trees.Giorgio Laguzzi, Heike Mildenberger & Brendan Stuber-Rousselle - 2023 - Mathematical Logic Quarterly 69 (1):15-30.
    We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well‐known notions, such as Lebesgue measurablility, Baire‐ and Doughnut‐property and the Marczewski field. Moreover, we prove that any absolute amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Hein's and Spinas' conjecture that.
    Download  
     
    Export citation  
     
    Bookmark  
  • No Tukey reduction of Lebesgue null to Silver null sets.Otmar Spinas - 2018 - Journal of Mathematical Logic 18 (2):1850011.
    We prove that consistently the Lebesgue null ideal is not Tukey reducible to the Silver null ideal. This contrasts with the situation for the meager ideal which, by a recent result of the author, Spinas [Silver trees and Cohen reals, Israel J. Math. 211 473–480] is Tukey reducible to the Silver ideal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • More on trees and Cohen reals.Giorgio Laguzzi & Brendan Stuber-Rousselle - 2020 - Mathematical Logic Quarterly 66 (2):173-181.
    In this paper we analyse some questions concerning trees on κ, both for the countable and the uncountable case, and the connections with Cohen reals. In particular, we provide a proof for one of the implications left open in [6, Question 5.2] about the diagram for regularity properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the separation of regularity properties of the reals.Giorgio Laguzzi - 2014 - Archive for Mathematical Logic 53 (7-8):731-747.
    We present a model where ω1 is inaccessible by reals, Silver measurability holds for all sets but Miller and Lebesgue measurability fail for some sets. This contributes to a line of research started by Shelah in the 1980s and more recently continued by Schrittesser and Friedman, regarding the separation of different notions of regularity properties of the real line.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Generalized Silver and Miller measurability.Giorgio Laguzzi - 2015 - Mathematical Logic Quarterly 61 (1-2):91-102.
    We present some results about the burgeoning research area concerning set theory of the “κ‐reals”. We focus on some notions of measurability coming from generalizations of Silver and Miller trees. We present analogies and mostly differences from the classical setting.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Cichoń’s diagram, regularity properties and $${\varvec{\Delta}^1_3}$$ Δ 3 1 sets of reals.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2014 - Archive for Mathematical Logic 53 (5-6):695-729.
    We study regularity properties related to Cohen, random, Laver, Miller and Sacks forcing, for sets of real numbers on the Δ31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_3}$$\end{document} level of the projective hieararchy. For Δ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_2}$$\end{document} and Σ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Sigma}^1_2}$$\end{document} sets, the relationships between these properties follows the pattern of the well-known Cichoń diagram for cardinal characteristics of the continuum. It is known that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Antichains of perfect and splitting trees.Paul Hein & Otmar Spinas - 2020 - Archive for Mathematical Logic 59 (3-4):367-388.
    We investigate uncountable maximal antichains of perfect trees and of splitting trees. We show that in the case of perfect trees they must have size of at least the dominating number, whereas for splitting trees they are of size at least \\), i.e. the covering coefficient of the meager ideal. Finally, we show that uncountable maximal antichains of superperfect trees are at least of size the bounding number; moreover we show that this is best possible.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some considerations on amoeba forcing notions.Giorgio Laguzzi - 2014 - Archive for Mathematical Logic 53 (5-6):487-502.
    In this paper we analyse some notions of amoeba for tree forcings. In particular we introduce an amoeba-Silver and prove that it satisfies quasi pure decision but not pure decision. Further we define an amoeba-Sacks and prove that it satisfies the Laver property. We also show some application to regularity properties. We finally present a generalized version of amoeba and discuss some interesting associated questions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Additivity of the two-dimensional Miller ideal.Otmar Spinas & Sonja Thiele - 2010 - Archive for Mathematical Logic 49 (6):617-658.
    Let ${{\mathcal J}\,(\mathbb M^2)}$ denote the σ-ideal associated with two-dimensional Miller forcing. We show that it is relatively consistent with ZFC that the additivity of ${{\mathcal J}\,(\mathbb M^2)}$ is bigger than the covering number of the ideal of the meager subsets of ω ω. We also show that Martin’s Axiom implies that the additivity of ${{\mathcal J}\,(\mathbb M^2)}$ is 2 ω .Finally we prove that there are no analytic infinite maximal antichains in any finite product of ${\mathfrak{P}{(\omega)}/{\rm fin}}$.
    Download  
     
    Export citation  
     
    Bookmark  
  • Different cofinalities of tree ideals.Saharon Shelah & Otmar Spinas - 2023 - Annals of Pure and Applied Logic 174 (8):103290.
    Download  
     
    Export citation  
     
    Bookmark