Switch to: References

Add citations

You must login to add citations.
  1. Free Will in a Quantum World?Valia Allori - 2019 - In J. Acacio de Barros & Carlos Montemayor (eds.), Quanta and Mind: Essays on the Connection Between Quantum Mechanics and Consciousness. Springer Verlag.
    In this paper, I argue that Conway and Kochen’s Free Will Theorem (1,2) to the conclusion that quantum mechanics and relativity entail freedom for the particles, does not change the situation in favor of a libertarian position as they would like. In fact, the theorem more or less implicitly assumes that people are free, and thus it begs the question. Moreover, it does not prove neither that if people are free, so are particles, nor that the property people possess when (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against free will in the contemporary natural sciences.Martín López-Corredoira - 2016 - In López-Corredoira Martín (ed.), Free Will: Interpretations, Implementations and Assessments. Nova Science Publ..
    The claim of the freedom of the will (understood as an individual who is transcendent to Nature) in the name of XXth century scientific knowledge, against the perspective of XVIIIth-XIXth century scientific materialism, is analysed and refuted in the present paper. The hypothesis of reductionism finds no obstacle within contemporary natural sciences. Determinism in classical physics is irrefutable, unless classical physics is itself refuted. From quantum mechanics, some authors argue that free will is possible because there is an ontological indeterminism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • System‐theoretical background of mystical and meditational experience.Mitja Peruš - 1997 - World Futures 51 (1):95-110.
    Download  
     
    Export citation  
     
    Bookmark  
  • The collapse of quantum states: A new interpretation. [REVIEW]Shimon Malin - 1993 - Foundations of Physics 23 (6):881-893.
    The collapse of quantum states is analyzed in terms of a breakdown into two generic phases: Phase I, in which the field of potentialities that the quantum state represents undergoes a discontinuous and unpredictable change into one of the base states which corresponds to the measurement performed, and phase II, in which a transition from the level of potentialities to the level of actualities takes place. Phase I is discussed in relation to a comment about collapse, made by Dirac in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation