Switch to: References

Add citations

You must login to add citations.
  1. On an Important Aspect of Relations between a Problem and Its Solution in Mathematics and the Concept of Proof.Toshio Irie - 2012 - Kagaku Tetsugaku 45 (2):115-129.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Showing Mathematical Flies the Way Out of Foundational Bottles: The Later Wittgenstein as a Forerunner of Lakatos and the Philosophy of Mathematical Practice.José Antonio Pérez-Escobar - 2022 - Kriterion – Journal of Philosophy 36 (2):157-178.
    This work explores the later Wittgenstein’s philosophy of mathematics in relation to Lakatos’ philosophy of mathematics and the philosophy of mathematical practice. I argue that, while the philosophy of mathematical practice typically identifies Lakatos as its earliest of predecessors, the later Wittgenstein already developed key ideas for this community a few decades before. However, for a variety of reasons, most of this work on philosophy of mathematics has gone relatively unnoticed. Some of these ideas and their significance as precursors for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Lakatos’ Quasi-Empiricism Revisited.Wei Zeng - 2022 - Kriterion – Journal of Philosophy 36 (2):227-246.
    The central idea of Lakatos’ quasi-empiricism view of the philosophy of mathematics is that truth values are transmitted bottom-up, but only falsity can be transmitted from basic statements. As it is falsity but not truth that flows bottom-up, Lakatos emphasizes that observation and induction play no role in both conjecturing and proving phases in mathematics. In this paper, I argue that Lakatos’ view that one cannot obtain primitive conjectures by induction contradicts the history of mathematics, and therefore undermines his quasi-empiricism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Contradictions and falling bridges: what was Wittgenstein’s reply to Turing?Ásgeir Berg Matthíasson - 2020 - British Journal for the History of Philosophy 29 (3).
    In this paper, I offer a close reading of Wittgenstein's remarks on inconsistency, mostly as they appear in the Lectures on the Foundations of Mathematics. I focus especially on an objection to Wittgenstein's view given by Alan Turing, who attended the lectures, the so-called ‘falling bridges’-objection. Wittgenstein's position is that if contradictions arise in some practice of language, they are not necessarily fatal to that practice nor necessitate a revision of that practice. If we then assume that we have adopted (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2020 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Depth and Clarity * Felix Muhlholzer. Braucht die Mathematik eine Grundlegung? Eine Kommentar des Teils III von Wittgensteins Bemerkungen uber die Grundlagen der Mathematik [Does Mathematics need a Foundation? A Commentary on Part III of Wittgenstein's Remarks on the Foundations of Mathematics]. Frankfurt: Vittorio Klostermann, 2010. ISBN: 978-3-465-03667-8. Pp. xiv + 602. [REVIEW]Juliet Floyd - 2015 - Philosophia Mathematica 23 (2):255-276.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The role of pragmatic considerations during mathematical derivation in the applicability of mathematics.José Antonio Pérez-Escobar - 2024 - Philosophical Investigations 47 (4):543-557.
    The conditions involved in the applicability of mathematics in science are the subject of ongoing debates. One of the best‐received approaches is the inferential account, which involves structural mappings and pragmatic considerations in a three‐step model. According to the inferential account, these pragmatic considerations happen in the immersion and interpretation stages, but not during derivation (symbol‐pushing in a mathematical formalism). In this work, I draw inspiration from the later Wittgenstein and make the case that the applicability of mathematics also rests (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Against a global conception of mathematical hinges.Jordi Fairhurst, José Antonio Pérez-Escobar & Deniz Sarikaya - forthcoming - Philosophical Quarterly.
    Epistemologists have developed a diverse group of theories, known as hinge epistemology, about our epistemic practices that resort to and expand on Wittgenstein's concept of ‘hinges’ in On Certainty. Within hinge epistemology there is a debate over the epistemic status of hinges. Some hold that hinges are non-epistemic (neither known, justified, nor warranted), while others contend that they are epistemic. Philosophers on both sides of the debate have often connected this discussion to Wittgenstein's later views on mathematics. Others have directly (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wittgenstein on Set Theory and the Enormously Big.Ryan Dawson - 2015 - Philosophical Investigations 39 (4):313-334.
    Wittgenstein's conception of infinity can be seen as continuing the tradition of the potential infinite that begins with Aristotle. Transfinite cardinals in set theory might seem to render the potential infinite defunct with the actual infinite now given mathematical legitimacy. But Wittgenstein's remarks on set theory argue that the philosophical notion of the actual infinite remains philosophical and is not given a mathematical status as a result of set theory. The philosophical notion of the actual infinite is not to be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Wittgenstein on pure and applied mathematics.Ryan Dawson - 2014 - Synthese 191 (17):4131-4148.
    Some interpreters have ascribed to Wittgenstein the view that mathematical statements must have an application to extra-mathematical reality in order to have use and so any statements lacking extra-mathematical applicability are not meaningful (and hence not bona fide mathematical statements). Pure mathematics is then a mere signgame of questionable objectivity, undeserving of the name mathematics. These readings bring to light that, on Wittgenstein’s offered picture of mathematical statements as rules of description, it can be difficult to see the role of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mark Jay Steiner May 6, 1942 – April 6, 2020.Yemima Ben-Menahem & Carl Posy - 2023 - Philosophia Mathematica 31 (3):409-416.
    Mark Jay Steiner, a brilliant and influential philosopher of mathematics, whose interests and accomplishments extended beyond that field as well, passed away on.
    Download  
     
    Export citation  
     
    Bookmark  
  • Petrification in Contemporary Set Theory: The Multiverse and the Later Wittgenstein.José Antonio Pérez-Escobar, Colin Jakob Rittberg & Deniz Sarikaya - forthcoming - Kriterion – Journal of Philosophy.
    This paper has two aims. First, we argue that Wittgenstein’s notion of petrification can be used to explain phenomena in advanced mathematics, sometimes better than more popular views on mathematics, such as formalism, even though petrification usually suffers from a diet of examples of a very basic nature (in particular a focus on addition of small numbers). Second, we analyse current disagreements on the absolute undecidability of CH under the notion of petrification and hinge epistemology. We argue that in contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • To Be is to Be the Object of a Possible Act of Choice.Massimiliano Carrara & Enrico Martino - 2010 - Studia Logica 96 (2):289-313.
    Aim of the paper is to revise Boolos’ reinterpretation of second-order monadic logic in terms of plural quantification ([4], [5]) and expand it to full second order logic. Introducing the idealization of plural acts of choice, performed by a suitable team of agents, we will develop a notion of plural reference . Plural quantification will be then explained in terms of plural reference. As an application, we will sketch a structuralist reconstruction of second-order arithmetic based on the axiom of infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hard and Blind: On Wittgenstein’s Genealogical View of Logical Necessity.Sorin Bangu - 2019 - Philosophy and Phenomenological Research 102 (2):439-458.
    My main aim is to sketch a certain reading (‘genealogical’) of later Wittgenstein’s views on logical necessity. Along the way, I engage with the inferentialism currently debated in the literature on the epistemology of deductive logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Motivating Wittgenstein's Perspective on Mathematical Sentences as Norms.Simon Friederich - 2011 - Philosophia Mathematica 19 (1):1-19.
    The later Wittgenstein’s perspective on mathematical sentences as norms is motivated for sentences belonging to Hilbertian axiomatic systems where the axioms are treated as implicit definitions. It is shown that in this approach the axioms are employed as norms in that they function as standards of what counts as using the concepts involved. This normative dimension of their mode of use, it is argued, is inherited by the theorems derived from them. Having been motivated along these lines, Wittgenstein’s perspective on (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The medical gap: intuition in medicine.Itai Adler - 2022 - Medicine, Health Care and Philosophy 25 (3):361-369.
    Intuition is frequently used in medicine. Along with the use of existing medical rules, there is a separate channel that physicians rely on when making decisions: their intuition. To cope with the epistemic problem of using intuition, I use some clues from Wittgenstein's philosophy to illuminate the decision-making process in medicine. First, I point to a connection between intuition as functioning in medicine and Wittgenstein's notions of "seeing as" or noticing "aspects". Secondly, I use Wittgenstein notion of empirical regularities hardened (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation