Switch to: References

Add citations

You must login to add citations.
  1. The three faces of faithfulness.Jiji Zhang & Peter Spirtes - 2016 - Synthese 193 (4):1011-1027.
    In the causal inference framework of Spirtes, Glymour, and Scheines, inferences about causal relationships are made from samples from probability distributions and a number of assumptions relating causal relations to probability distributions. The most controversial of these assumptions is the Causal Faithfulness Assumption, which roughly states that if a conditional independence statement is true of a probability distribution generated by a causal structure, it is entailed by the causal structure and not just for particular parameter values. In this paper we (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Causality as a theoretical concept: explanatory warrant and empirical content of the theory of causal nets.Gerhard Schurz & Alexander Gebharter - 2016 - Synthese 193 (4):1073-1103.
    We start this paper by arguing that causality should, in analogy with force in Newtonian physics, be understood as a theoretical concept that is not explicated by a single definition, but by the axioms of a theory. Such an understanding of causality implicitly underlies the well-known theory of causal nets and has been explicitly promoted by Glymour. In this paper we investigate the explanatory warrant and empirical content of TCN. We sketch how the assumption of directed cause–effect relations can be (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (3 other versions)Cartwright on causality: Methods, metaphysics and modularity.Daniel Steel - 2010 - Economics and Philosophy 26 (1):77-86.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Faithfulness, Coordination and Causal Coincidences.Naftali Weinberger - 2018 - Erkenntnis 83 (2):113-133.
    Within the causal modeling literature, debates about the Causal Faithfulness Condition have concerned whether it is probable that the parameters in causal models will have values such that distinct causal paths will cancel. As the parameters in a model are fixed by the probability distribution over its variables, it is initially puzzling what it means to assign probabilities to these parameters. I propose that to assign a probability to a parameter in a model is to treat that parameter as a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A comparison of three Occam’s razors for Markovian causal models.Jiji Zhang - 2013 - British Journal for the Philosophy of Science 64 (2):423-448.
    The framework of causal Bayes nets, currently influential in several scientific disciplines, provides a rich formalism to study the connection between causality and probability from an epistemological perspective. This article compares three assumptions in the literature that seem to constrain the connection between causality and probability in the style of Occam's razor. The trio includes two minimality assumptions—one formulated by Spirtes, Glymour, and Scheines (SGS) and the other due to Pearl—and the more well-known faithfulness or stability assumption. In terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Detection of unfaithfulness and robust causal inference.Jiji Zhang & Peter Spirtes - 2008 - Minds and Machines 18 (2):239-271.
    Much of the recent work on the epistemology of causation has centered on two assumptions, known as the Causal Markov Condition and the Causal Faithfulness Condition. Philosophical discussions of the latter condition have exhibited situations in which it is likely to fail. This paper studies the Causal Faithfulness Condition as a conjunction of weaker conditions. We show that some of the weaker conjuncts can be empirically tested, and hence do not have to be assumed a priori. Our results lead to (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias.Jiji Zhang - 2008 - Artificial Intelligence 172 (16-17):1873-1896.
    Causal discovery becomes especially challenging when the possibility of latent confounding and/or selection bias is not assumed away. For this task, ancestral graph models are particularly useful in that they can represent the presence of latent confounding and selection effect, without explicitly invoking unobserved variables. Based on the machinery of ancestral graphs, there is a provably sound causal discovery algorithm, known as the FCI algorithm, that allows the possibility of latent confounders and selection bias. However, the orientation rules used in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Frugal Inference of Causal Relations.Malcolm Forster, Garvesh Raskutti, Reuben Stern & Naftali Weinberger - 2018 - British Journal for the Philosophy of Science 69 (3):821-848.
    Recent approaches to causal modelling rely upon the causal Markov condition, which specifies which probability distributions are compatible with a directed acyclic graph. Further principles are required in order to choose among the large number of DAGs compatible with a given probability distribution. Here we present a principle that we call frugality. This principle tells one to choose the DAG with the fewest causal arrows. We argue that frugality has several desirable properties compared to the other principles that have been (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The problem of granularity for scientific explanation.David Kinney - 2019 - Dissertation, London School of Economics and Political Science (Lse)
    This dissertation aims to determine the optimal level of granularity for the variables used in probabilistic causal models. These causal models are useful for generating explanations in a number of scientific contexts. In Chapter 1, I argue that there is rarely a unique level of granularity at which a given phenomenon can be causally explained, thereby rejecting various causal exclusion arguments. In Chapter 2, I consider several recent proposals for measuring the explanatory power of causal explanations, and show that these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Another problem with RBN models of mechanisms.Alexander Gebharter - 2016 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 31 (2):177-188.
    Casini, Illari, Russo, and Williamson (2011) suggest to model mechanisms by means of recursive Bayesian networks (RBNs) and Clarke, Leuridan, and Williamson (2014) extend their modelling approach to mechanisms featuring causal feedback. One of the main selling points of the RBN approach should be that it provides answers to questions concerning manipulation and control. In this paper I demonstrate that the method to compute the effects of interventions the authors mentioned endorse leads to absurd results under the additional assumption of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (3 other versions)Review of Hunting Causes and Using Them: Approaches in Philosophy and Economics. [REVIEW]Daniel Steel - 2010 - Economics and Philosophy 26 (1):77-86.
    Download  
     
    Export citation  
     
    Bookmark   2 citations