Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Deflating skolem.F. A. Muller - 2005 - Synthese 143 (3):223-253.
    . Remarkably, despite the tremendous success of axiomatic set-theory in mathematics, logic and meta-mathematics, e.g., model-theory, two philosophical worries about axiomatic set-theory as the adequate catch of the set-concept keep haunting it. Having dealt with one worry in a previous paper in this journal, we now fulfil a promise made there, namely to deal with the second worry. The second worry is the Skolem Paradox and its ensuing Skolemite skepticism. We present a comparatively novel and simple analysis of the argument (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Foundational implications of the inner model hypothesis.Tatiana Arrigoni & Sy-David Friedman - 2012 - Annals of Pure and Applied Logic 163 (10):1360-1366.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What new axioms could not be.Kai Hauser - 2002 - Dialectica 56 (2):109–124.
    The paper exposes the philosophical and mathematical flaws in an attempt to settle the continuum problem by a new class of axioms based on probabilistic reasoning. I also examine the larger proposal behind this approach, namely the introduction of new primitive notions that would supersede the set theoretic foundation of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naturalism, Truth and Beauty in Mathematics.Matthew E. Moore - 2007 - Philosophia Mathematica 15 (2):141-165.
    Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathematician the degree of methodological autonomy that the irrealist's own arguments require. Thus a naturalist, as such, has at least as much reason to embrace mathematical realism as to embrace irrealism.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’nin Özel Ad Kuramındaki Sonsuz Gerileme Sorunu.Alper Yavuz - 2018 - In Vedat Kamer & Şafak Ural (eds.), VIII. Mantık Çalıştayı Kitabı. İstanbul, Turkey: Mantık Derneği Yayınları. pp. 513-527.
    Öz: Frege özel adların (ve diğer dilsel simgelerin) anlamları ve gönderimleri arasında ünlü ayrımını yaptığı “Anlam ve Gönderim Üzerine” (1948) adlı makalesinde, bu ayrımın önemi, gerekliliği ve sonuçları üzerine uzun değerlendirmeler yapar ancak özel adın anlamından tam olarak ne anlaşılması gerektiğinden yalnızca bir dipnotta kısaca söz eder. Örneğin “Aristoteles” özel adının anlamının Platon’un öğrencisi ve Büyük İskender’in öğretmeni ya da Stagira’da doğan Büyük İskender’in öğretmeni olarak alınabileceğini söyler. Burada dikkat çeken nokta örnekteki özel adın olası anlamları olarak gösterilen belirli betimlemelerin (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical existence.Penelope Maddy - 2005 - Bulletin of Symbolic Logic 11 (3):351-376.
    Despite some discomfort with this grandly philosophical topic, I do in fact hope to address a venerable pair of philosophical chestnuts: mathematical truth and existence. My plan is to set out three possible stands on these issues, for an exercise in compare and contrast.' A word of warning, though, to philosophical purists (and perhaps of comfort to more mathematical readers): I will explore these philosophical positions with an eye to their interconnections with some concrete issues of set theoretic method.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Naturalizing dissension.Matthew E. Moore - 2006 - Pacific Philosophical Quarterly 87 (3):325–334.
    Mathematical naturalism forbids philosophical interventions in mathematical practice. This principle, strictly construed, places severe constraints on legitimate philosophizing about mathematics; it is also arguably incompatible with mathematical realism. One argument for the latter conclusion charges the realist with inability to take a truly naturalistic view of the Gödel Program in set theory. This argument founders on the disagreement among mathematicians about that program's prospects for success. It also turns out that when disagreements run this deep it is counterproductive to take (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the Continuum Hypothesis a definite mathematical problem?Solomon Feferman - manuscript
    The purpose of this article is to explain why I believe that the Continuum Hypothesis (CH) is not a definite mathematical problem. My reason for that is that the concept of arbitrary set essential to its formulation is vague or underdetermined and there is no way to sharpen it without violating what it is supposed to be about. In addition, there is considerable circumstantial evidence to support the view that CH is not definite.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Descriptivism about the Reference of Set-Theoretic Expressions: Revisiting Putnam’s Model-Theoretic Arguments.Zeynep Soysal - 2020 - The Monist 103 (4):442-454.
    Putnam’s model-theoretic arguments for the indeterminacy of reference have been taken to pose a special problem for mathematical languages. In this paper, I argue that if one accepts that there are theory-external constraints on the reference of at least some expressions of ordinary language, then Putnam’s model-theoretic arguments for mathematical languages don’t go through. In particular, I argue for a kind of descriptivism about mathematical expressions according to which their reference is “anchored” in the reference of expressions of ordinary language. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • O filozofii matematyki Imre Lakatosa.Krzysztof Wójtowicz - 2007 - Roczniki Filozoficzne 55 (1):229-247.
    Download  
     
    Export citation  
     
    Bookmark  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Download  
     
    Export citation  
     
    Bookmark