Switch to: References

Add citations

You must login to add citations.
  1. Inner model operators in L.Mitch Rudominer - 2000 - Annals of Pure and Applied Logic 101 (2-3):147-184.
    An inner model operator is a function M such that given a Turing degree d, M is a countable set of reals, d M, and M has certain closure properties. The notion was introduced by Steel. In the context of AD, we study inner model operators M such that for a.e. d, there is a wellorder of M in L). This is related to the study of mice which are below the minimal inner model with ω Woodin cardinals. As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Core Models in the Presence of Woodin Cardinals.Ralf Schindler - 2006 - Journal of Symbolic Logic 71 (4):1145 - 1154.
    Let 0 < n < ω. If there are n Woodin cardinals and a measurable cardinal above, but $M_{n+1}^{\#}$ doesn't exist, then the core model K exists in a sense made precise. An Iterability Inheritance Hypothesis is isolated which is shown to imply an optimal correctness result for K.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • PFA Implies ADL(R).John R. Steel - 2005 - Journal of Symbolic Logic 70 (4):1255 - 1296.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The definability of E in self-iterable mice.Farmer Schlutzenberg - 2023 - Annals of Pure and Applied Logic 174 (2):103208.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the prewellorderings associated with the directed systems of mice.Grigor Sargsyan - 2013 - Journal of Symbolic Logic 78 (3):735-763.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The strength of choiceless patterns of singular and weakly compact cardinals.Daniel Busche & Ralf Schindler - 2009 - Annals of Pure and Applied Logic 159 (1-2):198-248.
    We extend the core model induction technique to a choiceless context, and we exploit it to show that each one of the following two hypotheses individually implies that , the Axiom of Determinacy, holds in the of a generic extension of : every uncountable cardinal is singular, and every infinite successor cardinal is weakly compact and every uncountable limit cardinal is singular.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Projective Games on the Reals.Juan P. Aguilera & Sandra Müller - 2020 - Notre Dame Journal of Formal Logic 61 (4):573-589.
    Let Mn♯ denote the minimal active iterable extender model which has n Woodin cardinals and contains all reals, if it exists, in which case we denote by Mn the class-sized model obtained by iterating the topmost measure of Mn class-many times. We characterize the sets of reals which are Σ1-definable from R over Mn, under the assumption that projective games on reals are determined:1. for even n, Σ1Mn=⅁RΠn+11;2. for odd n, Σ1Mn=⅁RΣn+11.This generalizes a theorem of Martin and Steel for L, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mice with finitely many Woodin cardinals from optimal determinacy hypotheses.Sandra Müller, Ralf Schindler & W. Hugh Woodin - 2020 - Journal of Mathematical Logic 20 (Supp01):1950013.
    We prove the following result which is due to the third author. Let [Formula: see text]. If [Formula: see text] determinacy and [Formula: see text] determinacy both hold true and there is no [Formula: see text]-definable [Formula: see text]-sequence of pairwise distinct reals, then [Formula: see text] exists and is [Formula: see text]-iterable. The proof yields that [Formula: see text] determinacy implies that [Formula: see text] exists and is [Formula: see text]-iterable for all reals [Formula: see text]. A consequence is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Woodin's axiom , bounded forcing axioms, and precipitous ideals on ω 1.Benjamin Claverie & Ralf Schindler - 2012 - Journal of Symbolic Logic 77 (2):475-498.
    If the Bounded Proper Forcing Axiom BPFA holds, then Mouse Reflection holds at N₂ with respect to all mouse operators up to the level of Woodin cardinals in the next ZFC-model. This yields that if Woodin's ℙ max axiom (*) holds, then BPFA implies that V is closed under the "Woodin-in-the-next-ZFC-model" operator. We also discuss stronger Mouse Reflection principles which we show to follow from strengthenings of BPFA, and we discuss the theory BPFA plus "NS ω1 is precipitous" and strengthenings (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The abc's of mice.Ernest Schimmerling - 2001 - Bulletin of Symbolic Logic 7 (4):485-503.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The consistency strength of successive cardinals with the tree property.Matthew Foreman, Menachem Magidor & Ralf-Dieter Schindler - 2001 - Journal of Symbolic Logic 66 (4):1837-1847.
    If ω n has the tree property for all $2 \leq n and $2^{ , then for all X ∈ H ℵ ω and $n exists.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ns Saturated and -Definable.Stefan Hoffelner - 2021 - Journal of Symbolic Logic 86 (1):25-59.
    We show that under the assumption of the existence of the canonical inner model with one Woodin cardinal$M_1$, there is a model of$\mathsf {ZFC}$in which$\mbox {NS}_{\omega _{1}}$is$\aleph _2$-saturated and${\Delta }_{1}$-definable with$\omega _1$as a parameter which answers a question of S. D. Friedman and L. Wu. We also show that starting from an arbitrary universe with a Woodin cardinal, there is a model with$\mbox {NS}_{\omega _{1}}$saturated and${\Delta }_{1}$-definable with a ladder system$\vec {C}$and a full Suslin treeTas parameters. Both results rely on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.
    We describe the inner models with representatives in all equivalence classes of thin equivalence relations in a given projective pointclass of even level assuming projective determinacy. The main result shows that these models are characterized by their correctness and the property that they correctly compute the tree from the appropriate scale. The main step towards this characterization shows that the tree from a scale can be reconstructed in a generic extension of an iterate of a mouse. We then construct models (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Descriptive inner model theory.Grigor Sargsyan - 2013 - Bulletin of Symbolic Logic 19 (1):1-55.
    The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture. One particular motivation for resolving MSC is that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The comparison lemma.John R. Steel - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Recognizable sets and Woodin cardinals: computation beyond the constructible universe.Merlin Carl, Philipp Schlicht & Philip Welch - 2018 - Annals of Pure and Applied Logic 169 (4):312-332.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Universally baire sets and definable well-orderings of the reals.Sy D. Friedman & Ralf Schindler - 2003 - Journal of Symbolic Logic 68 (4):1065-1081.
    Let n ≥ 3 be an integer. We show that it is consistent (relative to the consistency of n - 2 strong cardinals) that every $\Sigma_n^1-set$ of reals is universally Baire yet there is a (lightface) projective well-ordering of the reals. The proof uses "David's trick" in the presence of inner models with strong cardinals.
    Download  
     
    Export citation  
     
    Bookmark  
  • Disjoint Borel functions.Dan Hathaway - 2017 - Annals of Pure and Applied Logic 168 (8):1552-1563.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Universally Baire sets and definable well-orderings of the reals.S. Y. D. Friedman & Ralf Schindler - 2003 - Journal of Symbolic Logic 68 (4):1065-1081.
    Let n ≥ 3 be an integer. We show that it is consistent that every σ1n-set of reals is universally Baire yet there is a projective well-ordering of the reals. The proof uses “David’s trick” in the presence of inner models with strong cardinals.
    Download  
     
    Export citation  
     
    Bookmark  
  • Homogeneously Suslin sets in tame mice.Farmer Schlutzenberg - 2012 - Journal of Symbolic Logic 77 (4):1122-1146.
    This paper studies homogeneously Suslin (hom) sets of reals in tame mice. The following results are established: In 0 ¶ the hom sets are precisely the [Symbol] sets. In M n every hom set is correctly [Symbol] and (δ + 1)-universally Baire where ä is the least Woodin. In M u every hom set is <λ-hom, where λ is the supremum of the Woodins.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The largest countable inductive set is a mouse set.Mitch Rudominer - 1999 - Journal of Symbolic Logic 64 (2):443-459.
    Let κ R be the least ordinal κ such that L κ (R) is admissible. Let $A = \{x \in \mathbb{R} \mid (\exists\alpha such that x is ordinal definable in L α (R)}. It is well known that (assuming determinacy) A is the largest countable inductive set of reals. Let T be the theory: ZFC - Replacement + "There exists ω Woodin cardinals which are cofinal in the ordinals." T has consistency strength weaker than that of the theory ZFC + (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A minimal counterexample to universal baireness.Kai Hauser - 1999 - Journal of Symbolic Logic 64 (4):1601-1627.
    For a canonical model of set theory whose projective theory of the real numbers is stable under set forcing extensions, a set of reals of minimal complexity is constructed which fails to be universally Baire. The construction uses a general method for generating non-universally Baire sets via the Levy collapse of a cardinal, as well as core model techniques. Along the way it is shown (extending previous results of Steel) how sufficiently iterable fine structure models recognize themselves as global core (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An undecidable extension of Morley's theorem on the number of countable models.Christopher J. Eagle, Clovis Hamel, Sandra Müller & Franklin D. Tall - 2023 - Annals of Pure and Applied Logic 174 (9):103317.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Applying generic coding with help to uniformizations.Dan Hathaway - 2023 - Annals of Pure and Applied Logic 174 (4):103244.
    Download  
     
    Export citation  
     
    Bookmark  
  • The ramified analytical hierarchy using extended logics.Philip D. Welch - 2018 - Bulletin of Symbolic Logic 24 (3):306-318.
    The use of Extended Logics to replace ordinary second order definability in Kleene’s Ramified Analytical Hierarchy is investigated. This mirrors a similar investigation of Kennedy, Magidor and Väänänen [11] where Gödel’s universe L of constructible sets is subjected to similar variance. Enhancing second order definability allows models to be defined which may or may not coincide with the original Kleene hierarchy in domain. Extending the logic with game quantifiers, and assuming strong axioms of infinity, we obtain minimal correct models of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mouse sets.Mitch Rudominer - 1997 - Annals of Pure and Applied Logic 87 (1):1-100.
    In this paper we explore a connection between descriptive set theory and inner model theory. From descriptive set theory, we will take a countable, definable set of reals, A. We will then show that , where is a canonical model from inner model theory. In technical terms, is a “mouse”. Consequently, we say that A is a mouse set. For a concrete example of the type of set A we are working with, let ODnω1 be the set of reals which (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An analysis of the models.Rachid Atmai - 2019 - Journal of Symbolic Logic 84 (1):1-26.
    Download  
     
    Export citation  
     
    Bookmark