Switch to: References

Citations of:

The Body Problem in Aristotle

Apeiron 35 (3):211 - 234 (2002)

Add citations

You must login to add citations.
  1. Aristotle's Theory of Abstraction.Allan Bäck - 2014 - Cham, Switzerland: Springer.
    This book investigates Aristotle’s views on abstraction and explores how he uses it. In this work, the author follows Aristotle in focusing on the scientific detail first and then approaches the metaphysical claims, and so creates a reconstructed theory that explains many puzzles of Aristotle’s thought. Understanding the details of his theory of relations and abstraction further illuminates his theory of universals. Some of the features of Aristotle’s theory of abstraction developed in this book include: abstraction is a relation; perception (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Aristoteles’in Matematik Felsefesi ve Matematik Soyut­lama.Murat Kelikli - 2017 - Beytulhikme An International Journal of Philosophy 7 (2):33-49.
    Although there are many questions to be asked about philosophy of mathematics, the fundamental questions to be asked will be questions about what the mathematical object is in view of being and what the mathematical reasoning is in view of knowledge. It is clear that other problems will develop in parallel within the framework of the answers to these questions. For this rea­ son, when we approach Aristotle's philosophy of mathematics over these two basic problems, we come up with the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Can't Geometers Cut Themselves on the Acutely Angled Objects of Their Proofs? Aristotle on Shape as an Impure Power.Brad Berman - 2017 - Méthexis 29 (1):89-106.
    For Aristotle, the shape of a physical body is perceptible per se (DA II.6, 418a8-9). As I read his position, shape is thus a causal power, as a physical body can affect our sense organs simply in virtue of possessing it. But this invites a challenge. If shape is an intrinsically powerful property, and indeed an intrinsically perceptible one, then why are the objects of geometrical reasoning, as such, inert and imperceptible? I here address Aristotle’s answer to that problem, focusing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Geometrical objects' ontological status and boundaries in Aristotle. 유재민 - 2009 - Sogang Journal of Philosophy 18 (null):269-301.
    아리스토텔레스는 『형이상학』 13권 2장에서 기하학적 대상은 실체적으로 존재할 수 없음을 증명한다. 플라톤주의자들은 기하학적 대상이 실체적으로 감각대상 안에 있거나, 감각대상과 떨어져서 존재한다고 주장하는 자들이다. 아리스토텔레스는 13권 3장에서 기하학적 대상은 질료적으로 감각대상 안에 존재한다고 주장한다. 필자는 ‘질료적으로’의 의미를 ‘부수적으로’와 ‘잠재적으로’로 이해한다. 기하학적 대상은 감각대상 안에 있지만, 실체적으로가 아니라 부수적으로 존재하는 것들이다. 기하학적 대상은 그 자체로 변화를 겪을 수 없다. 변화를 겪는 직접적인 주체는 감각대상이다. 이 감각대상이 분할되거나, 또 다른 감각대상과 결합할 때 기하학적 대상은 간접적으로 변화를 겪는다. 기하학적 대상의 잠재성은 지성에 의해 추상과정을 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotle’s Philosophy of Mathematics and Mathematical Abstraction.Murat Keli̇kli̇ - 2017 - Beytulhikme An International Journal of Philosophy 7 (2):33-49.
    Although there are many questions to be asked about philosophy of mathematics, the fundamental questions to be asked will be questions about what the mathematical object is in view of being and what the mathematical reasoning is in view of knowledge. It is clear that other problems will develop in parallel within the framework of the answers to these questions. For this reason, when we approach Aristotle's philosophy of mathematics over these two basic problems, we come up with the concept (...)
    Download  
     
    Export citation  
     
    Bookmark