Switch to: References

Citations of:

An algorithm for axiomatizing every finite logic

In Computer Science and Multiple-Valued Logic. North-Holland. pp. 137-143 (1976)

Add citations

You must login to add citations.
  1. Tableau method of proof for Peirce’s three-valued propositional logic.José Renato Salatiel - 2022 - Filosofia Unisinos 23 (1):1-10.
    Peirce’s triadic logic has been under discussion since its discovery in the 1960s by Fisch and Turquette. The experiments with matrices of three-valued logic are recorded in a few pages of unpublished manuscripts dated 1909, a decade before similar systems have been developed by logicians. The purposes of Peirce’s work on such logic, as well as semantical aspects of his system, are disputable. In the most extensive work about it, Turquette suggested that the matrices are related in dual pairs of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Elimination of Cuts in First-order Finite-valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Journal of Information Processing and Cybernetics EIK 29 (6):333-355.
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Leśniewski's Systems of Logic and Foundations of Mathematics.Rafal Urbaniak - 2013 - Cham, Switzerland: Springer.
    With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy’s great ...
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Dual Systems of Sequents and Tableaux for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Bulletin of the EATCS 51:192-197.
    The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth value and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations