Switch to: References

Citations of:

Tarski and geometry

Journal of Symbolic Logic 51 (4):907-912 (1986)

Add citations

You must login to add citations.
  1. From Geometry to Conceptual Relativity.Thomas William Barrett & Hans Halvorson - 2017 - Erkenntnis 82 (5):1043-1063.
    The purported fact that geometric theories formulated in terms of points and geometric theories formulated in terms of lines are “equally correct” is often invoked in arguments for conceptual relativity, in particular by Putnam and Goodman. We discuss a few notions of equivalence between first-order theories, and we then demonstrate a precise sense in which this purported fact is true. We argue, however, that this fact does not undermine metaphysical realism.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Tarski's foundations of the geometry of solids.Arianna Betti & Iris Loeb - 2012 - Bulletin of Symbolic Logic 18 (2):230-260.
    The paper [Tarski: Les fondements de la géométrie des corps, Annales de la Société Polonaise de Mathématiques, pp. 29—34, 1929] is in many ways remarkable. We address three historico-philosophical issues that force themselves upon the reader. First we argue that in this paper Tarski did not live up to his own methodological ideals, but displayed instead a much more pragmatic approach. Second we show that Leśniewski's philosophy and systems do not play the significant role that one may be tempted to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What is Tarski's common concept of consequence?Ignacio Jané - 2006 - Bulletin of Symbolic Logic 12 (1):1-42.
    In 1936 Tarski sketched a rigorous definition of the concept of logical consequence which, he claimed, agreed quite well with common usage-or, as he also said, with the common concept of consequence. Commentators of Tarski's paper have usually been elusive as to what this common concept is. However, being clear on this issue is important to decide whether Tarski's definition failed (as Etchemendy has contended) or succeeded (as most commentators maintain). I argue that the common concept of consequence that Tarski (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A common axiom set for classical and intuitionistic plane geometry.Melinda Lombard & Richard Vesley - 1998 - Annals of Pure and Applied Logic 95 (1-3):229-255.
    We describe a first order axiom set which yields the classical first order Euclidean geometry of Tarski when used with classical logic, and yields an intuitionistic Euclidean geometry when used with intuitionistic logic. The first order language has a single six place atomic predicate and no function symbols. The intuitionistic system has a computational interpretation in recursive function theory, that is, a realizability interpretation analogous to those given by Kleene for intuitionistic arithmetic and analysis. This interpretation shows the unprovability in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • From completeness to archimedean completenes.Philip Ehrlich - 1997 - Synthese 110 (1):57-76.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Constructivity in Geometry.Richard Vesley - 1999 - History and Philosophy of Logic 20 (3-4):291-294.
    We review and contrast three ways to make up a formal Euclidean geometry which one might call constructive, in a computational sense. The starting point is the first-order geometry created by Tarski.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos.Melanie Frappier, Derek Brown & Robert DiSalle (eds.) - 2011 - Dordrecht and London: Springer.
    The essays in this volume concern the points of intersection between analytic philosophy and the philosophy of the exact sciences. More precisely, it concern connections between knowledge in mathematics and the exact sciences, on the one hand, and the conceptual foundations of knowledge in general. Its guiding idea is that, in contemporary philosophy of science, there are profound problems of theoretical interpretation-- problems that transcend both the methodological concerns of general philosophy of science, and the technical concerns of philosophers of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In the shadow of giants: The work of mario pieri in the foundations of mathematics.Elena Anne Marchisotto - 1995 - History and Philosophy of Logic 16 (1):107-119.
    (1995). In the shadow of giants: The work of mario pieri in the foundations of mathematics. History and Philosophy of Logic: Vol. 16, No. 1, pp. 107-119.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Survey on the Recent Studies of the Role of Diagrams in Mathematics from the Viewpoint of Philosophy of Mathematics.Hiroyuki Inaoka - 2014 - Kagaku Tetsugaku 47 (1):67-82.
    In this paper, we would present an overview of the recent studies on the role of diagram in mathematics. Traditionally, mathematicians and philosophers had thought that diagram should not be used in mathematical proofs, because relying on diagram would cause to various types of fallacies. But recently, some logicians and philosophers try to show that diagram has a legitimate place in proving mathematical theorems. We would review such trends of studies and provide some perspective from viewpoint of philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark