Switch to: References

Add citations

You must login to add citations.
  1. On Bivalent Semantics and Natural Deduction for Some Infectious Logics.Alex Belikov - forthcoming - Logic Journal of the IGPL.
    In this work, we propose a variant of so-called informational semantics, a technique elaborated by Voishvillo, for two infectious logics, Deutsch’s ${\mathbf{S}_{\mathbf{fde}}}$ and Szmuc’s $\mathbf{dS}_{\mathbf{fde}}$. We show how the machinery of informational semantics can be effectively used to analyse truth and falsity conditions of disjunction and conjunction. Using this technique, it is possible to claim that disjunction and conjunction can be rightfully regarded as such, a claim which was disputed in the recent literature. Both ${\mathbf{S}_{\mathbf{fde}}}$ and $\mathbf{dS}_{\mathbf{fde}}$ are formalized in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural Proof Theory for First-Order Weak Kleene Logics.Andreas Fjellstad - 2020 - Journal of Applied Non-Classical Logics 30 (3):272-289.
    This paper presents a sound and complete five-sided sequent calculus for first-order weak Kleene valuations which permits not only elegant representations of four logics definable on first-order weak Kleene valuations, but also admissibility of five cut rules by proof analysis.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof Theory of Paraconsistent Weak Kleene Logic.Francesco Paoli & Michele Pra Baldi - 2020 - Studia Logica 108 (4):779-802.
    Paraconsistent Weak Kleene Logic is the 3-valued propositional logic defined on the weak Kleene tables and with two designated values. Most of the existing proof systems for PWK are characterised by the presence of linguistic restrictions on some of their rules. This feature can be seen as a shortcoming. We provide a cut-free calculus for PWK that is devoid of such provisos. Moreover, we introduce a Priest-style tableaux calculus for PWK.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   4 citations  
  • Exactly True and Non-Falsity Logics Meeting Infectious Ones.Alex Belikov & Yaroslav Petrukhin - 2020 - Journal of Applied Non-Classical Logics 30 (2):93-122.
    In this paper, we study logical systems which represent entailment relations of two kinds. We extend the approach of finding ‘exactly true’ and ‘non-falsity’ versions of four-valued logics that emerged in series of recent works [Pietz & Rivieccio (2013). Nothing but the truth. Journal of Philosophical Logic, 42(1), 125–135; Shramko (2019). Dual-Belnap logic and anything but falsehood. Journal of Logics and their Applications, 6, 413–433; Shramko et al. (2017). First-degree entailment and its relatives. Studia Logica, 105(6), 1291–1317] to the case (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extensions of Paraconsistent Weak Kleene Logic.Francesco Paoli & Michele Pra Baldi - forthcoming - Logic Journal of the IGPL.
    Paraconsistent weak Kleene logic is the $3$-valued logic based on the weak Kleene matrices and with two designated values. In this paper, we investigate the poset of prevarieties of generalized involutive bisemilattices, focussing in particular on the order ideal generated by Α$\textrm{lg} $. Applying to this poset a general result by Alexej Pynko, we prove that, exactly like Priest’s logic of paradox, $\textrm{PWK}$ has only one proper nontrivial extension apart from classical logic: $\textrm{PWK}_{\textrm{E}}\textrm{,}$ PWK logic plus explosion. This $6$-valued logic, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conjunction and Disjunction in Infectious Logics.Hitoshi Omori & Damian Szmuc - 2017 - In Alexandru Baltag, Jeremy Seligman & Tomoyuki Yamada (eds.), Logic, Rationality, and Interaction (LORI 2017, Sapporo, Japan). Berlin: Springer. pp. 268-283.
    In this paper we discuss the extent to which conjunction and disjunction can be rightfully regarded as such, in the context of infectious logics. Infectious logics are peculiar many-valued logics whose underlying algebra has an absorbing or infectious element, which is assigned to a compound formula whenever it is assigned to one of its components. To discuss these matters, we review the philosophical motivations for infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall, noticing that none of them discusses (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations