Order:
See also
Damian Szmuc
Universidad de Buenos Aires (UBA)
  1.  31
    An Epistemic Interpretation of Paraconsistent Weak Kleene Logic.Damian Szmuc - forthcoming - Logic and Logical Philosophy.
    This paper extends Fitting's epistemic interpretation of some Kleene logics, to also account for Paraconsistent Weak Kleene logic. To achieve this goal, a dualization of Fitting's "cut-down" operator is discussed, rendering a "track-down" operator later used to represent the idea that no consistent opinion can arise from a set including an inconsistent opinion. It is shown that, if some reasonable assumptions are made, the truth-functions of Paraconsistent Weak Kleene coincide with certain operations defined in this track-down fashion. Finally, further reflections (...)
    Download  
     
    Export citation  
     
    My bibliography  
  2.  20
    Substructural Logics, Pluralism and Collapse.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - forthcoming - Synthese:1-17.
    When discussing Logical Pluralism several critics argue that such an open-minded position is untenable. The key to this conclusion is that, given a number of widely accepted assumptions, the pluralist view collapses into Logical Monism. In this paper we show that the arguments usually employed to arrive at this conclusion do not work. The main reason for this is the existence of certain substructural logics which have the same set of valid inferences as Classical Logic—although they are, in a clear (...)
    Download  
     
    Export citation  
     
    My bibliography  
  3.  61
    Conjunction and Disjunction in Infectious Logics.Hitoshi Omori & Damian Szmuc - 2017 - In Alexandru Baltag, Jeremy Seligman & Tomoyuki Yamada (eds.), Logic, Rationality, and Interaction: 6th International Workshop. Berlin: Springer. pp. 268-283.
    In this paper we discuss the extent to which conjunction and disjunction can be rightfully regarded as such, in the context of infectious logics. Infectious logics are peculiar many-valued logics whose underlying algebra has an absorbing or infectious element, which is assigned to a compound formula whenever it is assigned to one of its components. To discuss these matters, we review the philosophical motivations for infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall, noticing that none of them discusses (...)
    Download  
     
    Export citation  
     
    My bibliography  
  4.  62
    Theories of Truth Based on Four-Valued Infectious Logics.Damian Szmuc, Bruno Da Re & Federico Pailos - forthcoming - Logic Journal of the IGPL.
    Infectious logics are systems which have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated (i) as a way to treat different pathological sentences (like the Liar and the Truth-Teller) differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps, and (ii) as a way to (...)
    Download  
     
    Export citation  
     
    My bibliography  
  5.  12
    A Recovery Operator for Non-Transitive Approaches.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - forthcoming - Review of Symbolic Logic.
    In some recent papers, Cobreros, Egré, Ripley and van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a non-transitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut (...)
    Download  
     
    Export citation  
     
    My bibliography  
  6.  9
    Track-Down Operations on Bilattices.Damian Szmuc - 2018 - In Robert Wille & Martin Lukac (eds.), Proceedings of the 48th IEEE International Symposium on Multiple-Valued Logic. Los Alamitos, California, EE. UU.: pp. 74-79.
    This paper discusses a dualization of Fitting's notion of a "cut-down" operation on a bilattice, rendering a "track-down" operation, later used to represent the idea that a consistent opinion cannot arise from a set including an inconsistent opinion. The logic of track-down operations on bilattices is proved equivalent to the logic d_Sfde, dual to Deutsch's system S_fde. Furthermore, track-down operations are employed to provide an epistemic interpretation for paraconsistent weak Kleene logic. Finally, two logics of sequential combinations of cut-and track-down (...)
    Download  
     
    Export citation  
     
    My bibliography