Switch to: References

Add citations

You must login to add citations.
  1. Validity Concepts in Proof-theoretic Semantics.Peter Schroeder-Heister - 2006 - Synthese 148 (3):525-571.
    The standard approach to what I call “proof-theoretic semantics”, which is mainly due to Dummett and Prawitz, attempts to give a semantics of proofs by defining what counts as a valid proof. After a discussion of the general aims of proof-theoretic semantics, this paper investigates in detail various notions of proof-theoretic validity and offers certain improvements of the definitions given by Prawitz. Particular emphasis is placed on the relationship between semantic validity concepts and validity concepts used in normalization theory. It (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An intuitionistic theory of types with assumptions of high-arity variables.A. Bossi & S. Valentini - 1992 - Annals of Pure and Applied Logic 57 (2):93-149.
    After an introductory discussion on Martin-Löf's Intuitionistic Theory of Types , the paper introduces the notion of assumption of high-arity variable. Then the original theory is extended in a very uniform way by means of the new assumptions. Some improvements allowed by high-arity variables are shown. The main result of the paper is a normal form theorem for HITT. The detailed proof follows a computability method ‘a la Tait’. The main consequences of the normal form theorem are: the consistency of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Functional interpretations of feasibly constructive arithmetic.Stephen Cook & Alasdair Urquhart - 1993 - Annals of Pure and Applied Logic 63 (2):103-200.
    A notion of feasible function of finite type based on the typed lambda calculus is introduced which generalizes the familiar type 1 polynomial-time functions. An intuitionistic theory IPVω is presented for reasoning about these functions. Interpretations for IPVω are developed both in the style of Kreisel's modified realizability and Gödel's Dialectica interpretation. Applications include alternative proofs for Buss's results concerning the classical first-order system S12 and its intuitionistic counterpart IS12 as well as proofs of some of Buss's conjectures concerning IS12, (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Reduction of finite and infinite derivations.G. Mints - 2000 - Annals of Pure and Applied Logic 104 (1-3):167-188.
    We present a general schema of easy normalization proofs for finite systems S like first-order arithmetic or subsystems of analysis, which have good infinitary counterparts S ∞ . We consider a new system S ∞ + with essentially the same rules as S ∞ but different derivable objects: a derivation d∈S ∞ + of a sequent Γ contains a derivation Φ∈S of Γ . Three simple conditions on Φ including a normal form theorem for S ∞ + easily imply a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Proof-Theoretic Semantics.Peter Schroeder-Heister - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Combinatory logic.Katalin Bimbó - 2009 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a specific sequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polymorphism and the obstinate circularity of second order logic: A victims’ tale.Paolo Pistone - 2018 - Bulletin of Symbolic Logic 24 (1):1-52.
    The investigations on higher-order type theories and on the related notion of parametric polymorphism constitute the technical counterpart of the old foundational problem of the circularity of second and higher-order logic. However, the epistemological significance of such investigations has not received much attention in the contemporary foundational debate.We discuss Girard’s normalization proof for second order type theory or System F and compare it with two faulty consistency arguments: the one given by Frege for the logical system of the Grundgesetze and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intuitionistic completeness of first-order logic.Robert Constable & Mark Bickford - 2014 - Annals of Pure and Applied Logic 165 (1):164-198.
    We constructively prove completeness for intuitionistic first-order logic, iFOL, showing that a formula is provable in iFOL if and only if it is uniformly valid in intuitionistic evidence semantics as defined in intuitionistic type theory extended with an intersection operator.Our completeness proof provides an effective procedure that converts any uniform evidence into a formal iFOL proof. Uniform evidence can involve arbitrary concepts from type theory such as ordinals, topological structures, algebras and so forth. We have implemented that procedure in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A strong normalization result for classical logic.Franco Barbanera & Stefano Berardi - 1995 - Annals of Pure and Applied Logic 76 (2):99-116.
    In this paper we give a strong normalization proof for a set of reduction rules for classical logic. These reductions, more general than the ones usually considered in literature, are inspired to the reductions of Felleisen's lambda calculus with continuations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Normalization and excluded middle. I.Jonathan P. Seldin - 1989 - Studia Logica 48 (2):193 - 217.
    The usual rule used to obtain natural deduction formulations of classical logic from intuitionistic logic, namely.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Term-Space Semantics of Typed Lambda Calculus.Ryo Kashima, Naosuke Matsuda & Takao Yuyama - 2020 - Notre Dame Journal of Formal Logic 61 (4):591-600.
    Barendregt gave a sound semantics of the simple type assignment system λ → by generalizing Tait’s proof of the strong normalization theorem. In this paper, we aim to extend the semantics so that the completeness theorem holds.
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-idempotent intersection types for the Lambda-Calculus.Antonio Bucciarelli, Delia Kesner & Daniel Ventura - 2017 - Logic Journal of the IGPL 25 (4):431-464.
    Download  
     
    Export citation  
     
    Bookmark  
  • The λ μ T -calculus.Herman Geuvers, Robbert Krebbers & James McKinna - 2013 - Annals of Pure and Applied Logic 164 (6):676-701.
    Calculi with control operators have been studied as extensions of simple type theory. Real programming languages contain datatypes, so to really understand control operators, one should also include these in the calculus. As a first step in that direction, we introduce λμTλμT, a combination of Parigotʼs λμ-calculus and Gödelʼs T, to extend a calculus with control operators with a datatype of natural numbers with a primitive recursor.We consider the problem of confluence on raw terms, and that of strong normalization for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eta-rules in Martin-löf type theory.Ansten Klev - 2019 - Bulletin of Symbolic Logic 25 (3):333-359.
    The eta rule for a set A says that an arbitrary element of A is judgementally identical to an element of constructor form. Eta rules are not part of what may be called canonical Martin-Löf type theory. They are, however, justified by the meaning explanations, and a higher-order eta rule is part of that type theory. The main aim of this paper is to clarify this somewhat puzzling situation. It will be argued that lower-order eta rules do not, whereas the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Setting the Facts Straight.Mark Jago - 2011 - Journal of Philosophical Logic 40 (1):33-54.
    Substantial facts are not well-understood entities. Many philosophers object to their existence on this basis. Yet facts, if they can be understood, promise to do a lot of philosophical work: they can be used to construct theories of property possession and truthmaking, for example. Here, I give a formal theory of facts, including negative and logically complex facts. I provide a theory of reduction similar to that of the typed λ -calculus and use it to provide identity conditions for facts. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Tarski's fixed-point theorem and lambda calculi with monotone inductive types.Ralph Matthes - 2002 - Synthese 133 (1-2):107 - 129.
    The new concept of lambda calculi with monotone inductive types is introduced byhelp of motivations drawn from Tarski's fixed-point theorem (in preorder theory) andinitial algebras and initial recursive algebras from category theory. They are intendedto serve as formalisms for studying iteration and primitive recursion ongeneral inductively given structures. Special accent is put on the behaviour ofthe rewrite rules motivated by the categorical approach, most notably on thequestion of strong normalization (i.e., the impossibility of an infinitesequence of successive rewrite steps). It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)< i> M_< sup> ω considered as a programming language.Karl-Heinz Niggl - 1999 - Annals of Pure and Applied Logic 99 (1):73-92.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Linear Läuchli semantics.R. F. Blute & P. J. Scott - 1996 - Annals of Pure and Applied Logic 77 (2):101-142.
    We introduce a linear analogue of Läuchli's semantics for intuitionistic logic. In fact, our result is a strengthening of Läuchli's work to the level of proofs, rather than provability. This is obtained by considering continuous actions of the additive group of integers on a category of topological vector spaces. The semantics, based on functorial polymorphism, consists of dinatural transformations which are equivariant with respect to all such actions. Such dinatural transformations are called uniform. To any sequent in Multiplicative Linear Logic (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Elementary Proof of Strong Normalization for Atomic F.Fernando Ferreira & Gilda Ferreira - 2016 - Bulletin of the Section of Logic 45 (1):1-15.
    We give an elementary proof of the strong normalization of the atomic polymorphic calculus Fat.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Harmony of Identity.Ansten Klev - 2019 - Journal of Philosophical Logic 48 (5):867-884.
    The standard natural deduction rules for the identity predicate have seemed to some not to be harmonious. Stephen Read has suggested an alternative introduction rule that restores harmony but presupposes second-order logic. Here it will be shown that the standard rules are in fact harmonious. To this end, natural deduction will be enriched with a theory of definitional identity. This leads to a novel conception of canonical derivation, on the basis of which the identity elimination rule can be justified in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Progress report on generalized functionality.Jonathan P. Seldin - 1979 - Annals of Mathematical Logic 17 (1):29.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the convergence of reduction-based and model-based methods in proof theory.Gilles Dowek - 2009 - Logic Journal of the IGPL 17 (5):489-497.
    In the recent past, the reduction-based and the model-based methods to prove cut elimination have converged, so that they now appear just as two sides of the same coin. This paper details some of the steps of this transformation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Combinatorial realizability models of type theory.Pieter Hofstra & Michael A. Warren - 2013 - Annals of Pure and Applied Logic 164 (10):957-988.
    We introduce a new model construction for Martin-Löf intensional type theory, which is sound and complete for the 1-truncated version of the theory. The model formally combines, by gluing along the functor from the category of contexts to the category of groupoids, the syntactic model with a notion of realizability. As our main application, we use the model to analyse the syntactic groupoid associated to the type theory generated by a graph G, showing that it has the same homotopy type (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A most artistic package of a jumble of ideas.Fernando Ferreira - 2008 - Dialectica 62 (2):205–222.
    In the course of ten short sections, we comment on Gödel's seminal dialectica paper of fifty years ago and its aftermath. We start by suggesting that Gödel's use of functionals of finite type is yet another instance of the realistic attitude of Gödel towards mathematics, in tune with his defense of the postulation of ever increasing higher types in foundational studies. We also make some observations concerning Gödel's recasting of intuitionistic arithmetic via the dialectica interpretation, discuss the extra principles that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bounds for proof-search and speed-up in the predicate calculus.Richard Statman - 1978 - Annals of Mathematical Logic 15 (3):225.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • On the Proof-theoretic Foundation of General Definition Theory.Lars Hallnäs - 2006 - Synthese 148 (3):589-602.
    A general definition theory should serve as a foundation for the mathematical study of definitional structures. The central notion of such a theory is a precise explication of the intuitively given notion of a definitional structure. The purpose of this paper is to discuss the proof theory of partial inductive definitions as a foundation for this kind of a more general definition theory. Among the examples discussed is a suggestion for a more abstract definition of lambda-terms (derivations in natural deduction) (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Mω considered as a programming language.Karl-Heinz Niggl - 1999 - Annals of Pure and Applied Logic 99 (1-3):73-92.
    The paper studies a simply typed term system Mω providing a primitive recursive concept of parallelism in the sense of Plotkin. The system aims at defining and computing partial continuous functionals. Some connections between denotational and operational semantics → for Mω are investigated. It is shown that → is correct with respect to the denotational semantics. Conversely, → is complete in the sense that if a program denotes some number k, then it is reducible to the numeral nk. Restricting to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Typing untyped λ-terms, or reducibility strikes again!Jean Gallier - 1998 - Annals of Pure and Applied Logic 91 (2-3):231-270.
    It was observed by Curry that when λ-terms can be assigned types, for example, simple types, these terms have nice properties . Coppo, Dezani, and Veneri, introduced type systems using conjunctive types, and showed that several important classes of terms can be characterized according to the shape of the types that can be assigned to these terms. For example, the strongly normalizable terms, the normalizable terms, and the terms having head-normal forms, can be characterized in some systems and Ω. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Normalizing.Steffen van Bakel - 2004 - Notre Dame Journal of Formal Logic 45 (1):35-63.
    This paper defines reduction on derivations (cut-elimination) in the Strict Intersection Type Assignment System of an earlier paper and shows a strong normalization result for this reduction. Using this result, new proofs are given for the approximation theorem and the characterization of normalizability of terms using intersection types.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Validity of inferences and validity of demonstrations.Göran Sundholm - 2024 - Theoria 90 (5):459-478.
    The lecture spells out the difference between the validity of inference (-figure)s and validity applied to demonstrations (‘proof acts’). The latter notion is not an ordinary characterizing one; in Brentano's terminology it is a modifying one. A demonstration lacking validity is not a real demonstration, just as a false friend is no true friend. Throughout, the treatment makes crucial use of an epistemological perspective that is cast in the first person. Furthermore, the difference between (logical) consequence among propositions and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructive Validity of a Generalized Kreisel–Putnam Rule.Ivo Pezlar - forthcoming - Studia Logica.
    In this paper, we propose a computational interpretation of the generalized Kreisel–Putnam rule, also known as the generalized Harrop rule or simply the Split rule, in the style of BHK semantics. We will achieve this by exploiting the Curry–Howard correspondence between formulas and types. First, we inspect the inferential behavior of the Split rule in the setting of a natural deduction system for intuitionistic propositional logic. This will guide our process of formulating an appropriate program that would capture the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Herbrandized modified realizability.Gilda Ferreira & Paulo Firmino - 2024 - Archive for Mathematical Logic 63 (5):703-721.
    Realizability notions in mathematical logic have a long history, which can be traced back to the work of Stephen Kleene in the 1940s, aimed at exploring the foundations of intuitionistic logic. Kleene’s initial realizability laid the ground for more sophisticated notions such as Kreisel’s modified realizability and various modern approaches. In this context, our work aligns with the lineage of realizability strategies that emphasize the accumulation, rather than the propagation of precise witnesses. In this paper, we introduce a new notion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: Proof-theoretic semantics.Reinhard Kahle & Peter Schroeder-Heister - 2006 - Synthese 148 (3):503-506.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Strong Normalization and Typability with Intersection Types.Silvia Ghilezan - 1996 - Notre Dame Journal of Formal Logic 37 (1):44-52.
    A simple proof is given of the property that the set of strongly normalizing lambda terms coincides with the set of lambda terms typable in certain intersection type assignment systems.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Curry–Howard–Lambek Correspondence for Intuitionistic Belief.Cosimo Perini Brogi - 2021 - Studia Logica 109 (6):1441-1461.
    This paper introduces a natural deduction calculus for intuitionistic logic of belief \ which is easily turned into a modal \-calculus giving a computational semantics for deductions in \. By using that interpretation, it is also proved that \ has good proof-theoretic properties. The correspondence between deductions and typed terms is then extended to a categorical semantics for identity of proofs in \ showing the general structure of such a modality for belief in an intuitionistic framework.
    Download  
     
    Export citation  
     
    Bookmark  
  • Polymorphic extensions of simple type structures. With an application to a bar recursive minimization.Erik Barendsen & Marc Bezem - 1996 - Annals of Pure and Applied Logic 79 (3):221-280.
    The technical contribution of this paper is threefold.First we show how to encode functionals in a ‘flat’ applicative structure by adding oracles to untyped λ-calculus and mimicking the applicative behaviour of the functionals with an impredicatively defined reduction relation. The main achievement here is a Church-Rosser result for the extended reduction relation.Second, by combining the previous result with the model construction based on partial equivalence relations, we show how to extend a λ-closed simple type structure to a model of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A herbrandized functional interpretation of classical first-order logic.Fernando Ferreira & Gilda Ferreira - 2017 - Archive for Mathematical Logic 56 (5-6):523-539.
    We introduce a new typed combinatory calculus with a type constructor that, to each type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, associates the star type σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^*$$\end{document} of the nonempty finite subsets of elements of type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations