Switch to: References

Add citations

You must login to add citations.
  1. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Evolutionary Argument for a Self-Explanatory, Benevolent Metaphysics.Ward Blondé - 2015 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 2 (2):143-166.
    In this paper, a metaphysics is proposed that includes everything that can be represented by a well-founded multiset. It is shown that this metaphysics, apart from being self-explanatory, is also benevolent. Paradoxically, it turns out that the probability that we were born in another life than our own is zero. More insights are gained by inducing properties from a metaphysics that is not self-explanatory. In particular, digital metaphysics is analyzed, which claims that only computable things exist. First of all, it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The practice of finitism: Epsilon calculus and consistency proofs in Hilbert's program.Richard Zach - 2003 - Synthese 137 (1-2):211 - 259.
    After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The Ways of Hilbert's Axiomatics: Structural and Formal.Wilfried Sieg - 2014 - Perspectives on Science 22 (1):133-157.
    It is a remarkable fact that Hilbert's programmatic papers from the 1920s still shape, almost exclusively, the standard contemporary perspective of his views concerning (the foundations of) mathematics; even his own, quite different work on the foundations of geometry and arithmetic from the late 1890s is often understood from that vantage point. My essay pursues one main goal, namely, to contrast Hilbert's formal axiomatic method from the early 1920s with his existential axiomatic approach from the 1890s. Such a contrast illuminates (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Different senses of finitude: An inquiry into Hilbert’s finitism.Sören Stenlund - 2012 - Synthese 185 (3):335-363.
    This article develops a critical investigation of the epistemological core of Hilbert's foundational project, the so-called the finitary attitude. The investigation proceeds by distinguishing different senses of 'number' and 'finitude' that have been used in the philosophical arguments. The usual notion of modern pure mathematics, i.e. the sense of number which is implicit in the notion of an arbitrary finite sequence and iteration is one sense of number and finitude. Another sense, of older origin, is connected with practices of counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Takeuti's Well-Ordering Proof: Finitistically Fine?Eamon Darnell & Aaron Thomas-Bolduc - 2018 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics The CSHPM 2017 Annual Meeting in Toronto, Ontario. New York: Birkhäuser.
    If it could be shown that one of Gentzen's consistency proofs for pure number theory could be shown to be finitistically acceptable, an important part of Hilbert's program would be vindicated. This paper focuses on whether the transfinite induction on ordinal notations needed for Gentzen's second proof can be finitistically justified. In particular, the focus is on Takeuti's purportedly finitistically acceptable proof of the well-ordering of ordinal notations in Cantor normal form. The paper begins with a historically informed discussion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Essay Review. [REVIEW][author unknown] - 2008 - History and Philosophy of Logic 29 (2):183-193.
    W. Tait, The provenance of pure reason. Essays in the philosophy of mathematics and its history. New York: Oxford University Press, 2005. ix + 332 pp. £36.50. ISBN 0-19-514192-X. Reviewed by J. W....
    Download  
     
    Export citation  
     
    Bookmark  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • La constitución del programa de Hilbert.Max Fernández de Castro & Yolanda Torres Falcón - 2020 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 10 (2):31--50.
    In the pages that follow, it is our intention to present a panoramic and schematic view of the evolution of the formalist program, which derives from recent studies of lecture notes that were unknown until very recently. Firstly, we analyze certain elements of the program. Secondly, we observe how, once the program was established in 1920, in the period up to 1931, different types of finitism with a common basis were tried out by Hilbert and Bernays, in an effort to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Critical study of Michael Potter’s Reason’s Nearest Kin. [REVIEW]Richard Zach - 2005 - Notre Dame Journal of Formal Logic 46 (4):503-513.
    Critical study of Michael Potter, Reason's Nearest Kin. Philosophies of Arithmetic from Kant to Carnap. Oxford University Press, Oxford, 2000. x + 305 pages.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation