Switch to: References

Add citations

You must login to add citations.
  1. The computational content of Nonstandard Analysis.Sam Sanders - unknown
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonstandard arithmetic and recursive comprehension.H. Keisler - 2010 - Annals of Pure and Applied Logic 161 (8):1047-1062.
    First order reasoning about hyperintegers can prove things about sets of integers. In the author’s paper Nonstandard Arithmetic and Reverse Mathematics, Bulletin of Symbolic Logic 12 100–125, it was shown that each of the “big five” theories in reverse mathematics, including the base theory, has a natural nonstandard counterpart. But the counterpart of has a defect: it does not imply the Standard Part Principle that a set exists if and only if it is coded by a hyperinteger. In this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Nonstandard Counterpart of WWKL.Stephen G. Simpson & Keita Yokoyama - 2011 - Notre Dame Journal of Formal Logic 52 (3):229-243.
    In this paper, we introduce a system of nonstandard second-order arithmetic $\mathsf{ns}$-$\mathsf{WWKL_0}$ which consists of $\mathsf{ns}$-$\mathsf{BASIC}$ plus Loeb measure property. Then we show that $\mathsf{ns}$-$\mathsf{WWKL_0}$ is a conservative extension of $\mathsf{WWKL_0}$ and we do Reverse Mathematics for this system.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A non-standard construction of Haar measure and weak könig's lemma.Kazuyuki Tanaka & Takeshi Yamazaki - 2000 - Journal of Symbolic Logic 65 (1):173-186.
    In this paper, we show within RCA 0 that weak Konig's lemma is necessary and sufficient to prove that any (separable) compact group has a Haar measure. Within WKL 0 , a Haar measure is constructed by a non-standard method based on a fact that every countable non-standard model of WKL 0 has a proper initial part isomorphic to itself [10].
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Unifying the model theory of first-order and second-order arithmetic via WKL 0 ⁎.Ali Enayat & Tin Lok Wong - 2017 - Annals of Pure and Applied Logic 168 (6):1247-1283.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-standard analysis in ACA0 and Riemann mapping theorem.Keita Yokoyama - 2007 - Mathematical Logic Quarterly 53 (2):132-146.
    This research is motivated by the program of reverse mathematics and non-standard arguments in second-order arithmetic. Within a weak subsystem of second-order arithmetic ACA0, we investigate some aspects of non-standard analysis related to sequential compactness. Then, using arguments of non-standard analysis, we show the equivalence of the Riemann mapping theorem and ACA0 over WKL0. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Nonstandard arithmetic and reverse mathematics.H. Jerome Keisler - 2006 - Bulletin of Symbolic Logic 12 (1):100-125.
    We show that each of the five basic theories of second order arithmetic that play a central role in reverse mathematics has a natural counterpart in the language of nonstandard arithmetic. In the earlier paper [3] we introduced saturation principles in nonstandard arithmetic which are equivalent in strength to strong choice axioms in second order arithmetic. This paper studies principles which are equivalent in strength to weaker theories in second order arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Tanaka’s theorem revisited.Saeideh Bahrami - 2020 - Archive for Mathematical Logic 59 (7-8):865-877.
    Tanaka proved a powerful generalization of Friedman’s self-embedding theorem that states that given a countable nonstandard model \\) of the subsystem \ of second order arithmetic, and any element m of \, there is a self-embedding j of \\) onto a proper initial segment of itself such that j fixes every predecessor of m. Here we extend Tanaka’s work by establishing the following results for a countable nonstandard model \\ \)of \ and a proper cut \ of \:Theorem A. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 10th Asian Logic Conference: Sponsored by the Association for Symbolic Logic.Toshiyasu Arai - 2009 - Bulletin of Symbolic Logic 15 (2):246-265.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic.Nobuyuki Sakamoto & Keita Yokoyama - 2007 - Archive for Mathematical Logic 46 (5-6):465-480.
    In this paper, we show within ${\mathsf{RCA}_0}$ that both the Jordan curve theorem and the Schönflies theorem are equivalent to weak König’s lemma. Within ${\mathsf {WKL}_0}$ , we prove the Jordan curve theorem using an argument of non-standard analysis based on the fact that every countable non-standard model of ${\mathsf {WKL}_0}$ has a proper initial part that is isomorphic to itself (Tanaka in Math Logic Q 43:396–400, 1997).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Formalizing non-standard arguments in second-order arithmetic.Keita Yokoyama - 2010 - Journal of Symbolic Logic 75 (4):1199-1210.
    In this paper, we introduce the systems ns-ACA₀ and ns-WKL₀ of non-standard second-order arithmetic in which we can formalize non-standard arguments in ACA₀ and WKL₀, respectively. Then, we give direct transformations from non-standard proofs in ns-ACA₀ or ns-WKL₀ into proofs in ACA₀ or WKL₀.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Nonstandard second-order arithmetic and Riemannʼs mapping theorem.Yoshihiro Horihata & Keita Yokoyama - 2014 - Annals of Pure and Applied Logic 165 (2):520-551.
    In this paper, we introduce systems of nonstandard second-order arithmetic which are conservative extensions of systems of second-order arithmetic. Within these systems, we do reverse mathematics for nonstandard analysis, and we can import techniques of nonstandard analysis into analysis in weak systems of second-order arithmetic. Then, we apply nonstandard techniques to a version of Riemannʼs mapping theorem, and show several different versions of Riemannʼs mapping theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weaker cousins of Ramsey's theorem over a weak base theory.Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk & Katarzyna W. Kowalik - 2021 - Annals of Pure and Applied Logic 172 (10):103028.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Models of the Weak König Lemma.Tin Lok Wong - 2017 - Annals of the Japan Association for Philosophy of Science 25:25-34.
    Download  
     
    Export citation  
     
    Bookmark  
  • 2006 Annual Meeting of the Association for Symbolic Logic.Matthew Valeriote - 2007 - Bulletin of Symbolic Logic 13 (1):120-145.
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonstandard arithmetic and recursive comprehension.H. Jerome Keisler - 2010 - Annals of Pure and Applied Logic 161 (8):1047-1062.
    First order reasoning about hyperintegers can prove things about sets of integers. In the author’s paper Nonstandard Arithmetic and Reverse Mathematics, Bulletin of Symbolic Logic 12 100–125, it was shown that each of the “big five” theories in reverse mathematics, including the base theory , has a natural nonstandard counterpart. But the counterpart of has a defect: it does not imply the Standard Part Principle that a set exists if and only if it is coded by a hyperinteger. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (15 other versions)2010 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '10.Uri Abraham & Ted Slaman - 2011 - Bulletin of Symbolic Logic 17 (2):272-329.
    Download  
     
    Export citation  
     
    Bookmark  
  • Categorical characterizations of the natural numbers require primitive recursion.Leszek Aleksander Kołodziejczyk & Keita Yokoyama - 2015 - Annals of Pure and Applied Logic 166 (2):219-231.
    Download  
     
    Export citation  
     
    Bookmark   5 citations