Switch to: References

Add citations

You must login to add citations.
  1. Structures interpretable in models of bounded arithmetic.Neil Thapen - 2005 - Annals of Pure and Applied Logic 136 (3):247-266.
    We look for a converse to a result from [N. Thapen, A model-theoretic characterization of the weak pigeonhole principle, Annals of Pure and Applied Logic 118 175–195] that if the weak pigeonhole principle fails in a model K of bounded arithmetic, then there is an end-extension of K interpretable inside K. We show that if a model J of an induction-free theory of arithmetic is interpretable inside K, then either J is isomorphic to an initial segment of K , or (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Typical forcings, NP search problems and an extension of a theorem of Riis.Moritz Müller - 2021 - Annals of Pure and Applied Logic 172 (4):102930.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The polynomial and linear hierarchies in models where the weak pigeonhole principle fails.Leszek Aleksander Kołodziejczyk & Neil Thapen - 2008 - Journal of Symbolic Logic 73 (2):578-592.
    We show, under the assumption that factoring is hard, that a model of PV exists in which the polynomial hierarchy does not collapse to the linear hierarchy; that a model of S21 exists in which NP is not in the second level of the linear hierarchy; and that a model of S21 exists in which the polynomial hierarchy collapses to the linear hierarchy. Our methods are model-theoretic. We use the assumption about factoring to get a model in which the weak (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Upper and lower Ramsey bounds in bounded arithmetic.Kerry Ojakian - 2005 - Annals of Pure and Applied Logic 135 (1-3):135-150.
    Pudlák shows that bounded arithmetic proves an upper bound on the Ramsey number Rr . We will strengthen this result by improving the bound. We also investigate lower bounds, obtaining a non-constructive lower bound for the special case of 2 colors , by formalizing a use of the probabilistic method. A constructive lower bound is worked out for the case when the monochromatic set size is fixed to 3 . The constructive lower bound is used to prove two “reversals”. To (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Approximate counting and NP search problems.Leszek Aleksander Kołodziejczyk & Neil Thapen - 2022 - Journal of Mathematical Logic 22 (3).
    Journal of Mathematical Logic, Volume 22, Issue 03, December 2022. We study a new class of NP search problems, those which can be proved total using standard combinatorial reasoning based on approximate counting. Our model for this kind of reasoning is the bounded arithmetic theory [math] of [E. Jeřábek, Approximate counting by hashing in bounded arithmetic, J. Symb. Log. 74(3) (2009) 829–860]. In particular, the Ramsey and weak pigeonhole search problems lie in the new class. We give a purely computational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dual weak pigeonhole principle, Boolean complexity, and derandomization.Emil Jeřábek - 2004 - Annals of Pure and Applied Logic 129 (1-3):1-37.
    We study the extension 123) of the theory S21 by instances of the dual weak pigeonhole principle for p-time functions, dWPHPx2x. We propose a natural framework for formalization of randomized algorithms in bounded arithmetic, and use it to provide a strengthening of Wilkie's witnessing theorem for S21+dWPHP. We construct a propositional proof system WF , which captures the Π1b-consequences of S21+dWPHP. We also show that WF p-simulates the Unstructured Extended Nullstellensatz proof system of Buss et al. 256). We prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Fragments of approximate counting.Samuel R. Buss, Leszek Aleksander Kołodziejczyk & Neil Thapen - 2014 - Journal of Symbolic Logic 79 (2):496-525.
    We study the long-standing open problem of giving$\forall {\rm{\Sigma }}_1^b$separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the$\forall {\rm{\Sigma }}_1^b$Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A note on the E1 collection scheme and fragments of bounded arithmetic.Zofia Adamowicz & Leszek Aleksander Kołodziejczyk - 2010 - Mathematical Logic Quarterly 56 (2):126-130.
    We show that for each n ≥ 1, if T2n does not prove the weak pigeonhole principle for Σbn functions, then the collection scheme B Σ1 is not finitely axiomatizable over T2n. The same result holds with Sn2 in place of T 2n.
    Download  
     
    Export citation  
     
    Bookmark