Switch to: References

Add citations

You must login to add citations.
  1. Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms.Benedetta Giovanola & Simona Tiribelli - 2023 - AI and Society 38 (2):549-563.
    The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ethics-based auditing of automated decision-making systems: nature, scope, and limitations.Jakob Mökander, Jessica Morley, Mariarosaria Taddeo & Luciano Floridi - 2021 - Science and Engineering Ethics 27 (4):1–30.
    Important decisions that impact humans lives, livelihoods, and the natural environment are increasingly being automated. Delegating tasks to so-called automated decision-making systems can improve efficiency and enable new solutions. However, these benefits are coupled with ethical challenges. For example, ADMS may produce discriminatory outcomes, violate individual privacy, and undermine human self-determination. New governance mechanisms are thus needed that help organisations design and deploy ADMS in ways that are ethical, while enabling society to reap the full economic and social benefits of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Ethical Challenges of Artificial Intelligence in Health Care: A Narrative Review.Aaron T. Hui, Shawn S. Ahn, Carolyn T. Lye & Jun Deng - 2021 - Ethics in Biology, Engineering and Medicine 12 (1):55-71.
    Download  
     
    Export citation  
     
    Bookmark  
  • When to err is inhuman: An examination of the influence of artificial intelligence‐driven nursing care on patient safety.Elizabeth A. Johnson, Katherine M. Dudding & Jane M. Carrington - 2024 - Nursing Inquiry 31 (1):e12583.
    Artificial intelligence, as a nonhuman entity, is increasingly used to inform, direct, or supplant nursing care and clinical decision‐making. The boundaries between human‐ and nonhuman‐driven nursing care are blurred with the advent of sensors, wearables, camera devices, and humanoid robots at such an accelerated pace that the critical evaluation of its influence on patient safety has not been fully assessed. Since the pivotal release of To Err is Human, patient safety is being challenged by the dynamic healthcare environment like never (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Promises and Pitfalls of Algorithm Use by State Authorities.Maryam Amir Haeri, Kathrin Hartmann, Jürgen Sirsch, Georg Wenzelburger & Katharina A. Zweig - 2022 - Philosophy and Technology 35 (2):1-31.
    Algorithmic systems are increasingly used by state agencies to inform decisions about humans. They produce scores on risks of recidivism in criminal justice, indicate the probability for a job seeker to find a job in the labor market, or calculate whether an applicant should get access to a certain university program. In this contribution, we take an interdisciplinary perspective, provide a bird’s eye view of the different key decisions that are to be taken when state actors decide to use an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Justificatory explanations in machine learning: for increased transparency through documenting how key concepts drive and underpin design and engineering decisions.David Casacuberta, Ariel Guersenzvaig & Cristian Moyano-Fernández - 2024 - AI and Society 39 (1):279-293.
    Given the pervasiveness of AI systems and their potential negative effects on people’s lives (especially among already marginalised groups), it becomes imperative to comprehend what goes on when an AI system generates a result, and based on what reasons, it is achieved. There are consistent technical efforts for making systems more “explainable” by reducing their opaqueness and increasing their interpretability and explainability. In this paper, we explore an alternative non-technical approach towards explainability that complement existing ones. Leaving aside technical, statistical, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2022 - AI and Society 37 (1):215-230.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Weapons of moral construction? On the value of fairness in algorithmic decision-making.Simona Tiribelli & Benedetta Giovanola - 2022 - Ethics and Information Technology 24 (1):1-13.
    Fairness is one of the most prominent values in the Ethics and Artificial Intelligence (AI) debate and, specifically, in the discussion on algorithmic decision-making (ADM). However, while the need for fairness in ADM is widely acknowledged, the very concept of fairness has not been sufficiently explored so far. Our paper aims to fill this gap and claims that an ethically informed re-definition of fairness is needed to adequately investigate fairness in ADM. To achieve our goal, after an introductory section aimed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Conformity Assessments and Post-market Monitoring: A Guide to the Role of Auditing in the Proposed European AI Regulation.Jakob Mökander, Maria Axente, Federico Casolari & Luciano Floridi - 2022 - Minds and Machines 32 (2):241-268.
    The proposed European Artificial Intelligence Act (AIA) is the first attempt to elaborate a general legal framework for AI carried out by any major global economy. As such, the AIA is likely to become a point of reference in the larger discourse on how AI systems can (and should) be regulated. In this article, we describe and discuss the two primary enforcement mechanisms proposed in the AIA: the _conformity assessments_ that providers of high-risk AI systems are expected to conduct, and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Discrimination in the age of artificial intelligence.Bert Heinrichs - 2022 - AI and Society 37 (1):143-154.
    In this paper, I examine whether the use of artificial intelligence (AI) and automated decision-making (ADM) aggravates issues of discrimination as has been argued by several authors. For this purpose, I first take up the lively philosophical debate on discrimination and present my own definition of the concept. Equipped with this account, I subsequently review some of the recent literature on the use AI/ADM and discrimination. I explain how my account of discrimination helps to understand that the general claim in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Assembled Bias: Beyond Transparent Algorithmic Bias.Robyn Repko Waller & Russell L. Waller - 2022 - Minds and Machines 32 (3):533-562.
    In this paper we make the case for the emergence of novel kind of bias with the use of algorithmic decision-making systems. We argue that the distinctive generative process of feature creation, characteristic of machine learning (ML), contorts feature parameters in ways that can lead to emerging feature spaces that encode novel algorithmic bias involving already marginalized groups. We term this bias _assembled bias._ Moreover, assembled biases are distinct from the much-discussed algorithmic bias, both in source (training data versus feature (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Rise of the Big Tech Megacorporation: Review of Megacorporation: The Infinite Times of Alphabet by Glen Whelan and The Every by Dave Eggers: Megacorporation: The Infinite Times of Alphabet, Cambridge University Press, Cambridge, 2021, 200 pp., ISBN 978-1108428026; The Every, Penguin Group, New York, 2021, 512 pp., ISBN 978-0241535493. [REVIEW]Zena Al-Esia - 2022 - Journal of Business Ethics 181 (1):263-268.
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a political theory of data justice: a public good perspective.Chi Kwok & Ngai Keung Chan - 2021 - Journal of Information, Communication and Ethics in Society 19 (3):374-390.
    Purpose This study aims to develop an interdisciplinary political theory of data justice by connecting three major political theories of the public good with empirical studies about the functions of big data and offering normative principles for restricting and guiding the state’s data practices from a public good perspective. Design/methodology/approach Drawing on three major political theories of the public good – the market failure approach, the basic rights approach and the democratic approach – and critical data studies, this study synthesizes (...)
    Download  
     
    Export citation  
     
    Bookmark