Switch to: References

Add citations

You must login to add citations.
  1. Toward a stability theory of tame abstract elementary classes.Sebastien Vasey - 2018 - Journal of Mathematical Logic 18 (2):1850009.
    We initiate a systematic investigation of the abstract elementary classes that have amalgamation, satisfy tameness, and are stable in some cardinal. Assuming the singular cardinal hypothesis, we prove a full characterization of the stability cardinals, and connect the stability spectrum with the behavior of saturated models.We deduce that if a class is stable on a tail of cardinals, then it has no long splitting chains. This indicates that there is a clear notion of superstability in this framework.We also present an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the uniqueness property of forking in abstract elementary classes.Sebastien Vasey - 2017 - Mathematical Logic Quarterly 63 (6):598-604.
    In the setup of abstract elementary classes satisfying a local version of superstability, we prove the uniqueness property for μ‐forking, a certain independence notion arising from splitting. This had been a longstanding technical difficulty when constructing forking‐like notions in this setup. As an application, we show that the two versions of forking symmetry appearing in the literature (the one defined by Shelah for good frames and the one defined by VanDieren for splitting) are equivalent.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Downward categoricity from a successor inside a good frame.Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (3):651-692.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Superstability, noetherian rings and pure-semisimple rings.Marcos Mazari-Armida - 2021 - Annals of Pure and Applied Logic 172 (3):102917.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstract elementary classes stable in ℵ0.Saharon Shelah & Sebastien Vasey - 2018 - Annals of Pure and Applied Logic 169 (7):565-587.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Good frames in the Hart–Shelah example.Will Boney & Sebastien Vasey - 2018 - Archive for Mathematical Logic 57 (5-6):687-712.
    For a fixed natural number \, the Hart–Shelah example is an abstract elementary class with amalgamation that is categorical exactly in the infinite cardinals less than or equal to \. We investigate recently-isolated properties of AECs in the setting of this example. We isolate the exact amount of type-shortness holding in the example and show that it has a type-full good \-frame which fails the existence property for uniqueness triples. This gives the first example of such a frame. Along the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Saturation and solvability in abstract elementary classes with amalgamation.Sebastien Vasey - 2017 - Archive for Mathematical Logic 56 (5-6):671-690.
    Theorem 0.1LetK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}be an abstract elementary class with amalgamation and no maximal models. Letλ>LS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > {LS}$$\end{document}. IfK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is categorical inλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then the model of cardinalityλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}is Galois-saturated.This answers a question asked independently by Baldwin and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Superstability from categoricity in abstract elementary classes.Will Boney, Rami Grossberg, Monica M. VanDieren & Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (7):1383-1395.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Shelah's eventual categoricity conjecture in universal classes: Part I.Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (9):1609-1642.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Symmetry and the union of saturated models in superstable abstract elementary classes.M. M. VanDieren - 2016 - Annals of Pure and Applied Logic 167 (4):395-407.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Algebraic description of limit models in classes of abelian groups.Marcos Mazari-Armida - 2020 - Annals of Pure and Applied Logic 171 (1):102723.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Stability Results Assuming Tameness, Monster Model, and Continuity of Nonsplitting.Samson Leung - 2024 - Journal of Symbolic Logic 89 (1):383-425.
    Assuming the existence of a monster model, tameness, and continuity of nonsplitting in an abstract elementary class (AEC), we extend known superstability results: let $\mu>\operatorname {LS}(\mathbf {K})$ be a regular stability cardinal and let $\chi $ be the local character of $\mu $ -nonsplitting. The following holds: 1.When $\mu $ -nonforking is restricted to $(\mu,\geq \chi )$ -limit models ordered by universal extensions, it enjoys invariance, monotonicity, uniqueness, existence, extension, and continuity. It also has local character $\chi $. This generalizes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Equivalent definitions of superstability in Tame abstract elementary classes.Rami Grossberg & Sebastien Vasey - 2017 - Journal of Symbolic Logic 82 (4):1387-1408.
    Download  
     
    Export citation  
     
    Bookmark   10 citations