Switch to: References

Add citations

You must login to add citations.
  1. A Genealogical Approach to Algorithmic Bias.Marta Ziosi, David Watson & Luciano Floridi - 2024 - Minds and Machines 34 (2):1-17.
    The Fairness, Accountability, and Transparency (FAccT) literature tends to focus on bias as a problem that requires ex post solutions (e.g. fairness metrics), rather than addressing the underlying social and technical conditions that (re)produce it. In this article, we propose a complementary strategy that uses genealogy as a constructive, epistemic critique to explain algorithmic bias in terms of the conditions that enable it. We focus on XAI feature attributions (Shapley values) and counterfactual approaches as potential tools to gauge these conditions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ethics of Artificial Intelligence.Stefan Buijsman, Michael Klenk & Jeroen van den Hoven - forthcoming - In Nathalie Smuha (ed.), Cambridge Handbook on the Law, Ethics and Policy of AI. Cambridge University Press.
    Artificial Intelligence (AI) is increasingly adopted in society, creating numerous opportunities but at the same time posing ethical challenges. Many of these are familiar, such as issues of fairness, responsibility and privacy, but are presented in a new and challenging guise due to our limited ability to steer and predict the outputs of AI systems. This chapter first introduces these ethical challenges, stressing that overviews of values are a good starting point but frequently fail to suffice due to the context (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Means-End Account of Explainable Artificial Intelligence.Oliver Buchholz - 2023 - Synthese 202 (33):1-23.
    Explainable artificial intelligence (XAI) seeks to produce explanations for those machine learning methods which are deemed opaque. However, there is considerable disagreement about what this means and how to achieve it. Authors disagree on what should be explained (topic), to whom something should be explained (stakeholder), how something should be explained (instrument), and why something should be explained (goal). In this paper, I employ insights from means-end epistemology to structure the field. According to means-end epistemology, different means ought to be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Freedom at Work: Understanding, Alienation, and the AI-Driven Workplace.Kate Vredenburgh - 2022 - Canadian Journal of Philosophy 52 (1):78-92.
    This paper explores a neglected normative dimension of algorithmic opacity in the workplace and the labor market. It argues that explanations of algorithms and algorithmic decisions are of noninstrumental value. That is because explanations of the structure and function of parts of the social world form the basis for reflective clarification of our practical orientation toward the institutions that play a central role in our life. Using this account of the noninstrumental value of explanations, the paper diagnoses distinctive normative defects (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples.Timo Freiesleben - 2021 - Minds and Machines 32 (1):1-33.
    The same method that creates adversarial examples to fool image-classifiers can be used to generate counterfactual explanations that explain algorithmic decisions. This observation has led researchers to consider CEs as AEs by another name. We argue that the relationship to the true label and the tolerance with respect to proximity are two properties that formally distinguish CEs and AEs. Based on these arguments, we introduce CEs, AEs, and related concepts mathematically in a common framework. Furthermore, we show connections between current (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations