Order:
Disambiguations
David Watson [5]David S. Watson [2]
  1. (2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2020 - Synthese 198 (10):1–⁠32.
    We propose a formal framework for interpretable machine learning. Combining elements from statistical learning, causal interventionism, and decision theory, we design an idealised explanation game in which players collaborate to find the best explanation for a given algorithmic prediction. Through an iterative procedure of questions and answers, the players establish a three-dimensional Pareto frontier that describes the optimal trade-offs between explanatory accuracy, simplicity, and relevance. Multiple rounds are played at different levels of abstraction, allowing the players to explore overlapping causal (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  2. Clinical applications of machine learning algorithms: beyond the black box.David S. Watson, Jenny Krutzinna, Ian N. Bruce, Christopher E. M. Griffiths, Iain B. McInnes, Michael R. Barnes & Luciano Floridi - 2019 - British Medical Journal 364:I886.
    Machine learning algorithms may radically improve our ability to diagnose and treat disease. For moral, legal, and scientific reasons, it is essential that doctors and patients be able to understand and explain the predictions of these models. Scalable, customisable, and ethical solutions can be achieved by working together with relevant stakeholders, including patients, data scientists, and policy makers.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  3. The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence.David Watson - 2019 - Minds and Machines 29 (3):417-440.
    Artificial intelligence has historically been conceptualized in anthropomorphic terms. Some algorithms deploy biomimetic designs in a deliberate attempt to effect a sort of digital isomorphism of the human brain. Others leverage more general learning strategies that happen to coincide with popular theories of cognitive science and social epistemology. In this paper, I challenge the anthropomorphic credentials of the neural network algorithm, whose similarities to human cognition I argue are vastly overstated and narrowly construed. I submit that three alternative supervised learning (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  4. Crowdsourced science: sociotechnical epistemology in the e-research paradigm.David Watson & Luciano Floridi - 2018 - Synthese 195 (2):741-764.
    Recent years have seen a surge in online collaboration between experts and amateurs on scientific research. In this article, we analyse the epistemological implications of these crowdsourced projects, with a focus on Zooniverse, the world’s largest citizen science web portal. We use quantitative methods to evaluate the platform’s success in producing large volumes of observation statements and high impact scientific discoveries relative to more conventional means of data processing. Through empirical evidence, Bayesian reasoning, and conceptual analysis, we show how information (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  5. Causal feature learning for utility-maximizing agents.David Kinney & David Watson - 2020 - In David Kinney & David Watson (eds.), International Conference on Probabilistic Graphical Models. pp. 257–268.
    Discovering high-level causal relations from low-level data is an important and challenging problem that comes up frequently in the natural and social sciences. In a series of papers, Chalupka etal. (2015, 2016a, 2016b, 2017) develop a procedure forcausal feature learning (CFL) in an effortto automate this task. We argue that CFL does not recommend coarsening in cases where pragmatic considerations rule in favor of it, and recommends coarsening in cases where pragmatic considerations rule against it. We propose a new technique, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Local explanations via necessity and sufficiency: unifying theory and practice.David Watson, Limor Gultchin, Taly Ankur & Luciano Floridi - 2022 - Minds and Machines 32:185-218.
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We provide a sound and complete algorithm for computing explanatory factors (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation