Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Substitutions of Σ10-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic.Albert Visser - 2002 - Annals of Pure and Applied Logic 114 (1-3):227-271.
    This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A small reflection principle for bounded arithmetic.Rineke Verbrugge & Albert Visser - 1994 - Journal of Symbolic Logic 59 (3):785-812.
    We investigate the theory IΔ 0 + Ω 1 and strengthen [Bu86. Theorem 8.6] to the following: if NP ≠ co-NP. then Σ-completeness for witness comparison formulas is not provable in bounded arithmetic. i.e. $I\delta_0 + \Omega_1 + \nvdash \forall b \forall c (\exists a(\operatorname{Prf}(a.c) \wedge \forall = \leq a \neg \operatorname{Prf} (z.b))\\ \rightarrow \operatorname{Prov} (\ulcorner \exists a(\operatorname{Prf}(a. \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z.\bar{b})) \urcorner)).$ Next we study a "small reflection principle" in bounded arithmetic. We prove that for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Bimodal logics for extensions of arithmetical theories.Lev D. Beklemishev - 1996 - Journal of Symbolic Logic 61 (1):91-124.
    We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of (IΔ 0 + EXP, PRA); (PRA, IΣ 1 ); (IΣ m , IΣ n ) for $1 \leq m etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The interpretability logic of all reasonable arithmetical theories.Joost J. Joosten & Albert Visser - 2000 - Erkenntnis 53 (1-2):3-26.
    This paper is a presentation of astatus quæstionis, to wit of the problemof the interpretability logic of all reasonablearithmetical theories.We present both the arithmetical side and themodal side of the question.Dedicated to Dick de Jongh on the occasion of his 60th birthday.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Substitutions of< i> Σ_< sub> 1< sup> 0-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic. [REVIEW]Albert Visser - 2002 - Annals of Pure and Applied Logic 114 (1):227-271.
    This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Provability and Interpretability Logics with Restricted Realizations.Thomas F. Icard & Joost J. Joosten - 2012 - Notre Dame Journal of Formal Logic 53 (2):133-154.
    The provability logic of a theory $T$ is the set of modal formulas, which under any arithmetical realization are provable in $T$. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set $\Gamma$. We make an analogous modification for interpretability logics. We first study provability logics with restricted realizations and show that for various natural candidates of $T$ and restriction set $\Gamma$, the result is the logic of linear frames. However, for the theory Primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Montague’s Paradox, Informal Provability, and Explicit Modal Logic.Walter Dean - 2014 - Notre Dame Journal of Formal Logic 55 (2):157-196.
    The goal of this paper is to explore the significance of Montague’s paradox—that is, any arithmetical theory $T\supseteq Q$ over a language containing a predicate $P$ satisfying $P\rightarrow \varphi $ and $T\vdash \varphi \,\therefore\,T\vdash P$ is inconsistent—as a limitative result pertaining to the notions of formal, informal, and constructive provability, in their respective historical contexts. To this end, the paradox is reconstructed in a quantified extension $\mathcal {QLP}$ of Artemov’s logic of proofs. $\mathcal {QLP}$ contains both explicit modalities $t:\varphi $ (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Second Incompleteness Theorem and Bounded Interpretations.Albert Visser - 2012 - Studia Logica 100 (1-2):399-418.
    In this paper we formulate a version of Second Incompleteness Theorem. The idea is that a sequential sentence has ‘consistency power’ over a theory if it enables us to construct a bounded interpretation of that theory. An interpretation of V in U is bounded if, for some n , all translations of V -sentences are U -provably equivalent to sentences of complexity less than n . We call a sequential sentence with consistency power over T a pro-consistency statement for T (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • No Escape from Vardanyan's theorem.Albert Visser & Maartje de Jonge - 2006 - Archive for Mathematical Logic 45 (5):539-554.
    Vardanyan's theorem states that the set of PA-valid principles of Quantified Modal Logic, QML, is complete Π0 2. We generalize this result to a wide class of theories. The crucial step in the generalization is avoiding the use of Tennenbaum's Theorem.
    Download  
     
    Export citation  
     
    Bookmark   7 citations