Switch to: References

Add citations

You must login to add citations.
  1. Superselection Rules for Philosophers.John Earman - 2008 - Erkenntnis 69 (3):377-414.
    The overaraching goal of this paper is to elucidate the nature of superselection rules in a manner that is accessible to philosophers of science and that brings out the connections between superselection and some of the most fundamental interpretational issues in quantum physics. The formalism of von Neumann algebras is used to characterize three different senses of superselection rules (dubbed, weak, strong, and very strong) and to provide useful necessary and sufficient conditions for each sense. It is then shown how (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Two roads to retrocausality.Emily Adlam - 2022 - Synthese 200 (5):1-36.
    In recent years the quantum foundations community has seen increasing interest in the possibility of using retrocausality as a route to rejecting the conclusions of Bell’s theorem and restoring locality to quantum physics. On the other hand, it has also been argued that accepting nonlocality leads to a form of retrocausality. In this article we seek to elucidate the relationship between retrocausality and locality. We begin by providing a brief schema of the various ways in which violations of Bell’s inequalities (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relativistic Invariance and Modal Interpretations.John Earman & Laura Ruetsche - 2005 - Philosophy of Science 72 (4):557-583.
    A number of arguments have been given to show that the modal interpretation of ordinary nonrelativistic quantum mechanics cannot be consistently extended to the relativistic setting. We find these arguments inconclusive. However, there is a prima facie reason to think that a tension exists between the modal interpretation and relativistic invariance; namely, the best candidate for a modal interpretation adapted to relativistic quantum field theory, a prescription due to Rob Clifton, comes out trivial when applied to a number of systems (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations