Switch to: References

Add citations

You must login to add citations.
  1. Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    A new form of skepticism is described, which holds that objectivity and understanding are incompossible ideals of modern science. This is attributed to Weyl, hence its name: Weylean skepticism. Two general defeat strategies are then proposed, one of which is rejected.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Defending Wittgenstein.Piotr Dehnel - 2023 - Philosophical Investigations 47 (1):137-149.
    Samuel J. Wheeler defends Wittgenstein's criticism of Cantor's set theory against the objections raised by Hilary Putnam. Putnam claims that Wittgenstein's dismissal of the basic tenets of this set theory concerning the noncountability of the set of real numbers was unfounded and ill‐conceived. In Wheeler's view, Putnam's charges result from his failure to grasp Wittgenstein's intention and, in particular, to consider the difference between empirical and logical impossibility. In my paper, I argue that Wheeler's defence is unsuccessful and, at the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Showing Mathematical Flies the Way Out of Foundational Bottles: The Later Wittgenstein as a Forerunner of Lakatos and the Philosophy of Mathematical Practice.José Antonio Pérez-Escobar - 2022 - Kriterion – Journal of Philosophy 36 (2):157-178.
    This work explores the later Wittgenstein’s philosophy of mathematics in relation to Lakatos’ philosophy of mathematics and the philosophy of mathematical practice. I argue that, while the philosophy of mathematical practice typically identifies Lakatos as its earliest of predecessors, the later Wittgenstein already developed key ideas for this community a few decades before. However, for a variety of reasons, most of this work on philosophy of mathematics has gone relatively unnoticed. Some of these ideas and their significance as precursors for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2020 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein on pure and applied mathematics.Ryan Dawson - 2014 - Synthese 191 (17):4131-4148.
    Some interpreters have ascribed to Wittgenstein the view that mathematical statements must have an application to extra-mathematical reality in order to have use and so any statements lacking extra-mathematical applicability are not meaningful (and hence not bona fide mathematical statements). Pure mathematics is then a mere signgame of questionable objectivity, undeserving of the name mathematics. These readings bring to light that, on Wittgenstein’s offered picture of mathematical statements as rules of description, it can be difficult to see the role of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Misunderstanding gödel: New arguments about Wittgenstein and new remarks by Wittgenstein.Victor Rodych - 2003 - Dialectica 57 (3):279–313.
    The long‐standing issue of Wittgenstein's controversial remarks on Gödel's Theorem has recently heated up in a number of different and interesting directions [, , ]. In their , Juliet Floyd and Hilary Putnam purport to argue that Wittgenstein's‘notorious’ “Contains a philosophical claim of great interest,” namely, “if one assumed. that →P is provable in Russell's system one should… give up the “translation” of P by the English sentence ‘P is not provable’,” because if ωP is provable in PM, PM is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wittgenstein on the Infinity of Primes.Timm Lampert∗ - 2008 - History and Philosophy of Logic 29 (1):63-81.
    It is controversial whether Wittgenstein's philosophy of mathematics is of critical importance for mathematical proofs, or is only concerned with the adequate philosophical interpretation of mathematics. Wittgenstein's remarks on the infinity of prime numbers provide a helpful example which will be used to clarify this question. His antiplatonistic view of mathematics contradicts the widespread understanding of proofs as logical derivations from a set of axioms or assumptions. Wittgenstein's critique of traditional proofs of the infinity of prime numbers, specifically those of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wittgenstein's Critique of Set Theory.Victor Rodych - 2000 - Southern Journal of Philosophy 38 (2):281-319.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Wittgenstein in Cantor's paradise.Karim Zahidi - 2024 - Philosophical Investigations 47 (4):484-500.
    This paper offers an evaluation of Wittgenstein's critique of Cantorian set theory, illustrating his broader philosophical stance on mathematics. By emphasizing the constructed nature of mathematical theories, Wittgenstein encourages a reflective approach to mathematics that acknowledges human agency in its development. His engagement with Cantorian set theory provides valuable insights into the philosophical and practical dimensions of mathematics, urging a reconsideration of its foundations and the nature of mathematical proofs. This perspective aligns closely with the philosophy of mathematical practice, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against a global conception of mathematical hinges.Jordi Fairhurst, José Antonio Pérez-Escobar & Deniz Sarikaya - forthcoming - Philosophical Quarterly.
    Epistemologists have developed a diverse group of theories, known as hinge epistemology, about our epistemic practices that resort to and expand on Wittgenstein's concept of ‘hinges’ in On Certainty. Within hinge epistemology there is a debate over the epistemic status of hinges. Some hold that hinges are non-epistemic (neither known, justified, nor warranted), while others contend that they are epistemic. Philosophers on both sides of the debate have often connected this discussion to Wittgenstein's later views on mathematics. Others have directly (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wittgenstein's inversion of gödel's theorem.Victor Rodych - 1999 - Erkenntnis 51 (2-3):173-206.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Gödel's ‘Disproof’ of the Syntactical Viewpoint.Victor Rodych - 2001 - Southern Journal of Philosophy 39 (4):527-555.
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein, formalism, and symbolic mathematics.Anderson Luis Nakano - 2020 - Kriterion: Journal of Philosophy 61 (145):31-53.
    ABSTRACT In a recent essay, Sören Stenlund tries to align Wittgenstein’s approach to the foundations and nature of mathematics with the tradition of symbolic mathematics. The characterization of symbolic mathematics made by Stenlund, according to which mathematics is logically separated from its external applications, brings it closer to the formalist position. This raises naturally the question whether Wittgenstein holds a formalist position in philosophy of mathematics. The aim of this paper is to give a negative answer to this question, defending (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On an Important Aspect of Relations between a Problem and Its Solution in Mathematics and the Concept of Proof.Toshio Irie - 2012 - Kagaku Tetsugaku 45 (2):115-129.
    Download  
     
    Export citation  
     
    Bookmark