Switch to: References

Add citations

You must login to add citations.
  1. Bimodal logics for extensions of arithmetical theories.Lev D. Beklemishev - 1996 - Journal of Symbolic Logic 61 (1):91-124.
    We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of (IΔ 0 + EXP, PRA); (PRA, IΣ 1 ); (IΣ m , IΣ n ) for $1 \leq m etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The logic of arithmetical hierarchy.Giorgie Dzhaparidze - 1994 - Annals of Pure and Applied Logic 66 (2):89-112.
    Formulas of the propositional modal language with the unary modal operators □, Σ1, 1, Σ2, 2,… are considered as schemata of sentences of arithmetic , where □A is interpreted as “A is PA-provable”, ΣnA as “A is PA-equivalent to a Σn-sentence” and nA as “A is PA-equivalent to a Boolean combination of Σn-sentences”. We give an axiomatization and show decidability of the sets of the modal formulas which are schemata of: PA-provable, true arithmetical sentences.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On bimodal logics of provability.Lev D. Beklemishev - 1994 - Annals of Pure and Applied Logic 68 (2):115-159.
    We investigate the bimodal logics sound and complete under the interpretation of modal operators as the provability predicates in certain natural pairs of arithmetical theories . Carlson characterized the provability logic for essentially reflexive extensions of theories, i.e. for pairs similar to . Here we study pairs of theories such that the gap between and is not so wide. In view of some general results concerning the problem of classification of the bimodal provability logics we are particularly interested in such (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Short Note on Essentially Σ1 Sentences.Franco Montagna & Duccio Pianigiani - 2013 - Logica Universalis 7 (1):103-111.
    Guaspari (J Symb Logic 48:777–789, 1983) conjectured that a modal formula is it essentially Σ1 (i.e., it is Σ1 under any arithmetical interpretation), if and only if it is provably equivalent to a disjunction of formulas of the form ${\square{B}}$ . This conjecture was proved first by A. Visser. Then, in (de Jongh and Pianigiani, Logic at Work: In Memory of Helena Rasiowa, Springer-Physica Verlag, Heidelberg-New York, pp. 246–255, 1999), the authors characterized essentially Σ1 formulas of languages including witness comparisons (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On strong provability predicates and the associated modal logics.Konstantin N. Ignatiev - 1993 - Journal of Symbolic Logic 58 (1):249-290.
    PA is Peano Arithmetic. Pr(x) is the usual Σ1-formula representing provability in PA. A strong provability predicate is a formula which has the same properties as Pr(·) but is not Σ1. An example: Q is ω-provable if PA + ¬ Q is ω-inconsistent (Boolos [4]). In [5] Dzhaparidze introduced a joint provability logic for iterated ω-provability and obtained its arithmetical completeness. In this paper we prove some further modal properties of Dzhaparidze's logic, e.g., the fixed point property and the Craig (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Self provers and Σ1 sentences.Evan Goris & Joost Joosten - 2012 - Logic Journal of the IGPL 20 (1):1-21.
    This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Matters for Interpretability Logics.Evan Goris & Joost Joosten - 2008 - Logic Journal of the IGPL 16 (4):371-412.
    This paper is the first in a series of three related papers on modal methods in interpretability logics and applications. In this first paper the fundaments are laid for later results. These fundaments consist of a thorough treatment of a construction method to obtain modal models. This construction method is used to reprove some known results in the area of interpretability like the modal completeness of the logic IL. Next, the method is applied to obtain new results: the modal completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)All finitely axiomatizable subframe logics containing the provability logic CSM $_{0}$ are decidable.Frank Wolter - 1998 - Archive for Mathematical Logic 37 (3):167-182.
    In this paper we investigate those extensions of the bimodal provability logic ${\vec CSM}_{0}$ (alias ${\vec PRL}_{1}$ or ${\vec F}^{-})$ which are subframe logics, i.e. whose general frames are closed under a certain type of substructures. Most bimodal provability logics are in this class. The main result states that all finitely axiomatizable subframe logics containing ${\vec CSM}_{0}$ are decidable. We note that, as a rule, interesting systems in this class do not have the finite model property and are not even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the complexity of arithmetical interpretations of modal formulae.Lev D. Beklemishev - 1993 - Archive for Mathematical Logic 32 (3):229-238.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The structure of lattices of subframe logics.Frank Wolter - 1997 - Annals of Pure and Applied Logic 86 (1):47-100.
    This paper investigates the structure of lattices of normal mono- and polymodal subframelogics, i.e., those modal logics whose frames are closed under a certain type of substructures. Nearly all basic modal logics belong to this class. The main lattice theoretic tool applied is the notion of a splitting of a complete lattice which turns out to be connected with the “geometry” and “topology” of frames, with Kripke completeness and with axiomatization problems. We investigate in detail subframe logics containing K4, those (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Manufacturing a cartesian closed category with exactly two objects out of a c-monoid.P. H. Rodenburg & F. J. Linden - 1989 - Studia Logica 48 (3):279-283.
    A construction is described of a cartesian closed category A with exactly two elements out of a C-monoid such that can be recovered from A without reference to the construction.
    Download  
     
    Export citation  
     
    Bookmark